

Pergamon

TETRAHEDRON

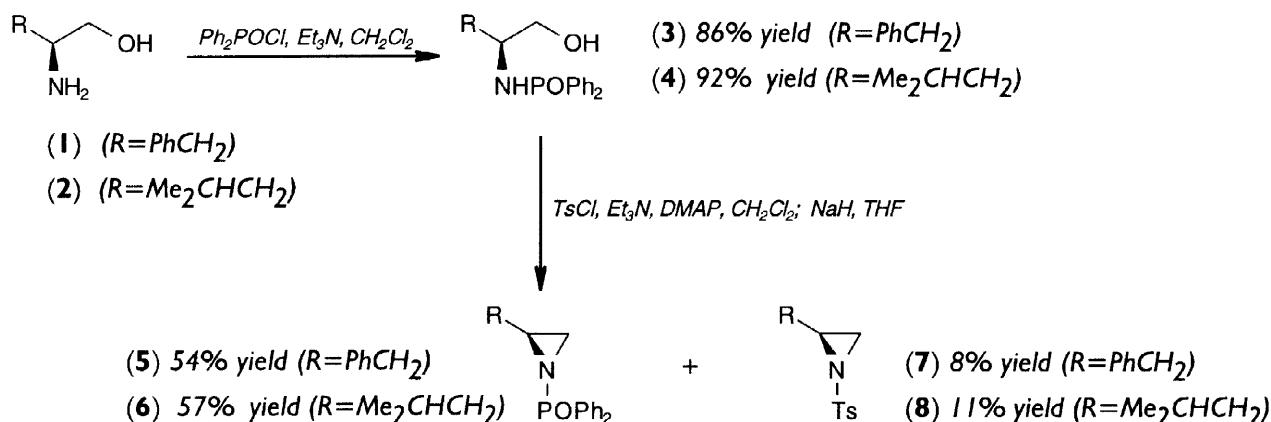
Tetrahedron 54 (1998) 2181–2208

Preparation and Ring-Opening Reactions of *N*-Diphenylphosphinyl Aziridines

Alex A. Cantrill, Helen M.I. Osborn and Joseph Sweeney*[†]

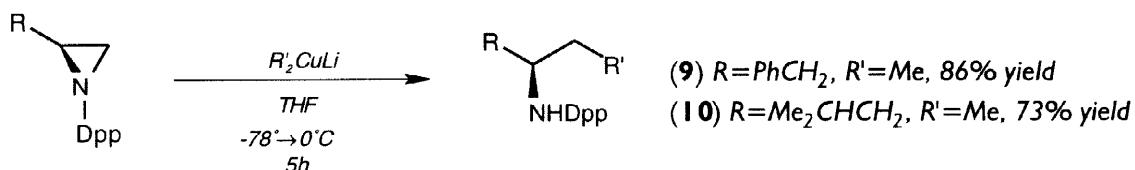
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

Received 4 September 1997; accepted 18 December 1997


Abstract: Monochiral *N*-Diphenylphosphinyl aziridines ('N-Dpp aziridines') may efficiently be prepared from monochiral 2-aminoalcohols. Such aziridines undergo ring-opening reaction with a variety of nucleophiles in good yield. Dephosphinylation is accomplished under mild conditions.

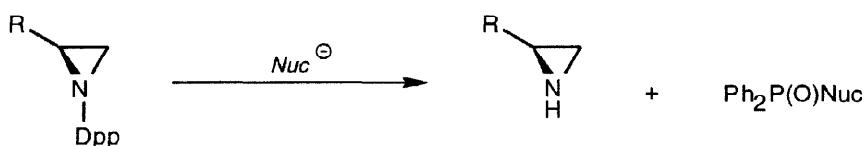
© 1998 Elsevier Science Ltd. All rights reserved.

The implementation of aziridine chemistry in organic synthesis has lagged behind that of epoxide chemistry in many respects, despite the obvious similarities between these two classes of strained heterocycles. There are two main reasons for this: firstly, there is a relative dearth of general and simple preparative methods for synthesis of aziridines² (in stark contrast to the plethora of methods for epoxide synthesis) and, secondly, the extra valency of nitrogen adds the complication that a suitable masking group need be present; ideally, this group would also activate the three-membered ring to cleavage by nucleophiles. Such activation has most commonly been attained by use of sulfonyl groups, which impart excellent activation for ring-opening processes but suffer from the considerable handicap that they are removed from ring-opened compounds only under harsh conditions.³ We were interested in such problems for a particular reason, viz. during our previously-documented research programme⁴ towards monochiral 3-aminoacids (involving ring-opening of *N*-tosylaziridines by dithiane anions as its fulcrum) we had found that standard desulphonylation protocols had been completely destructive when the nitrogen atom concerned could function as a leaving group. Thus, we sought to replace the problematic sulphonyl group with an alternative species which could function both as a ring-opening activator and be easily detached once ring-cleavage had been attained.


The first possible alternative we examined proved to be successful (*vide infra*). The diphenylphosphinyl ('Dpp') group, we reasoned, should exhibit a similar activating effect to that shown by a toluenesulphonyl group due the high polarity of the P=O bond, but would be more easily removed due to the lack of interaction of a nitrogen lone pair with phosphorous (X-ray data⁵ indicates nitrogen in the diphenylphosphinamide group to be tetrahedral, as opposed to the trigonal nitrogen often observed in the sulfonamide unit). Indeed, Ueki and Ramage had previously shown that Dpp-protection of nitrogen was feasible and that the N-P bond could be cleaved under mild conditions.^{6,7} The literature contained few reports of *N*-Dpp aziridines: Cram *et al* had prepared the parent compound (i.e the Dpp aziridine derived from ethylene imine itself) for NMR studies,⁸ but there seemed to be no other reports. Thus we embarked on our programme of research by preparing a range of monochiral, 2-amino acid-derived *N*-Dpp aziridines using a method analogous to that we had previously employed to good effect for preparation of *N*-tosylaziridines.⁹ Thus, monochiral amino alcohols (I)

and (2), derived from (S)-phenylalanine and (S)-leucine, respectively, were selectively *N*-diphenylphosphinylated in good yield and the resulting crude phosphinamido alcohols (3) and (4) were then tosylated. Treatment of these phosphinamidotosylates with triethylamine in refluxing THF (as carried out in synthesis of *N*-tosylaziridines) did not, however, furnish Dpp aziridines and starting materials were returned quantitatively. When a stronger base, sodium hydride, was employed, three-exo-tet cyclization smoothly occurred in refluxing THF to give *N*-Dpp aziridines (5) and (6) in 46% and 52% yields (from aminoalcohols 1 and 2) (scheme 1). We also isolated a small amount of the corresponding *N*-tosylaziridines (7) and (8) as by-products. The Dpp aziridines exhibited characteristic long-range P-H coupling in their ^1H NMR spectra.

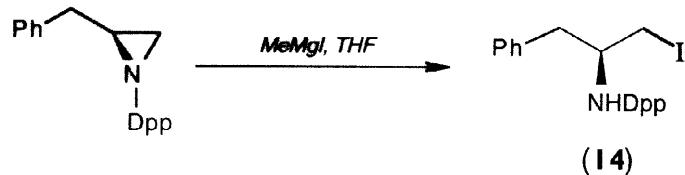
Scheme 1


Armed with our proposed new monochiral 2-aminoethyl cation equivalents, we proceeded to the reaction of interest, viz. ring-opening by dithiane anions, but we were disheartened to witness no useful reaction, under a wide range of reaction conditions, between either aziridine (5) or (6) and a range of dithiane anions which had previously proved useful in ring-opening of *N*-tosylaziridines. In these reactions, a plethora of products were observed, none of which corresponded to the desired ring-opened product and the majority of which evaded identification. The use of di(phenylsulphonyl)methane anions (previously used as effective alternatives where use of dithiane anions had been fruitless) improved the situation in as much as the reactions did not deliver complex mixtures of unidentifiable products, but the only compounds isolated from the reactions were starting materials. The reaction of our Dpp aziridines with dimethylcopperlithium gave the first indication that phosphorous activation of aziridines might prove synthetically useful: ring-opening occurred smoothly and cleanly to give the ring-opened product arising from attack of nucleophile at the aziridine carbon atom of lesser substitution to give *N*-Dpp amines (9) and (10) in good yield (86% and 73%, respectively).

Scheme 2

When we attempted to extrapolate this observation by using a range of alkyl and aryl cuprates, we were once more disappointed to observe no ring-opening reaction taking place. In this case, the organometallic reagents nucleophilically attacked phosphorous, rather than carbon, and dephosphinylation was observed, giving the apposite alkyl or aryl diphenylphosphine oxides (**11**) and (**13**) in moderate yield (Table 1). This is, of course, a laborious way of preparing such compounds, but the reaction parallels that of *N*-acylaziridines, which frequently function as acylating agents.¹⁰ The use of higher order cuprates did not alleviate the problem and alkyl lithiums reacted in similar fashion. Reaction with EtMgBr yielded neither the product of ring-opening, nor the product arising from attack at phosphorous, even when the reaction was carried in refluxing THF. Only starting materials were isolated from the reaction. The use of sulphur-stabilized copper(I) additives (such as CuBr.SEt₂ or CuBr.SMe₂) at temperatures between -40 and 0 °C also returned starting materials as the only product of the reactions.

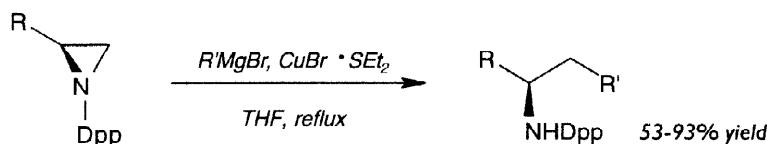
TABLE 1 - DEPHOSPHINYULATION OF *N*-DPP AZIRIDINES


R	Conditions	Product	Yield/%
Bn	Bu ₂ CuLi, THF, -78°C to 0 °C, 2h	Ph ₂ P(O)Bu (11)	61
ⁱ Bu	Bu ₂ CuLi, THF, -78°C to 0 °C, 2h	Ph ₂ P(O)Bu (11)	83
ⁱ Bu	BuLi,Ce(III)Cl ₃ , THF, -78°C, 2h	Ph ₂ P(O)Bu (11)	80
PhCH ₂	MeOH, BF ₃ OEt ₂ , 0 °C, 4h	Ph ₂ P(O)OMe (12)	99
ⁱ Bu	MeOH, BF ₃ OEt ₂ , 0 °C, 2h	Ph ₂ P(O)OMe (12)	65
Bn	PhLi, THF, -78 °C, 1.5h	Ph ₂ P(O)Ph (13)	77
ⁱ Bu	Ph ₂ CuLi, THF, -78 °C, 2h	Ph ₂ P(O)Ph (13)	76

Thus it seemed that aminoacid-derived Dpp aziridines might, after all, not function as monochiral 2-aminoethyl cation equivalents. The only ring-opening reaction observed with Grignard reagents came when MeMgI caused formation of iodophosphinamide (**14**) (*via in situ* formation of MgI₂) (scheme 3) and, thus we turned our attention to a range of heteroatom-centred nucleophiles and were gratified to witness that these aziridines could, indeed, be ring-opened by such nucleophiles, to give amines (**14**)–(**22**) (Table 2). Successful reaction was observed with azide, phenylsulphanide, phenylselanide, and TMSCN, in addition to the ring-opening reaction with iodide alluded to earlier.

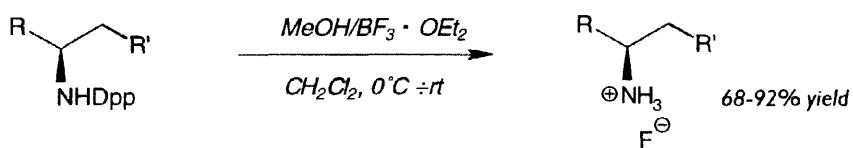
TABLE 2-MONOCHEIRAL PHOSPHINAMIDES PREPARED BY NUCLEOPHILIC RING-OPENING OF N-DPP AZIRIDINES

(9) 86, ^{*,§} 67 [†]	(10) 73 [§]	(14) 68	(15) 77	(16) 52	(17) 99
(18) 92	(19) 70	(20) 51	(21) 56	(22) 58	(23) 73 [†]
(24) 71 [†]	(25) 88 [†]	(26) 84 [†]	(27) 89 [†]	(28) 76 [†]	(29) 93 [†]
(30) 76 [†]	(31) 53 [†]	(32) 84 [†]	(33) 74 [†]	(34) 56 [†]	(35) 60 [†]


*Isolated yield of phosphinamide/%. [§] Me_2CuLi used as nucleophile; [†] MeMgBr used as nucleophile; appropriate Grignard reagent used in presence of $\text{CuBr}\cdot\text{SE}_2$.

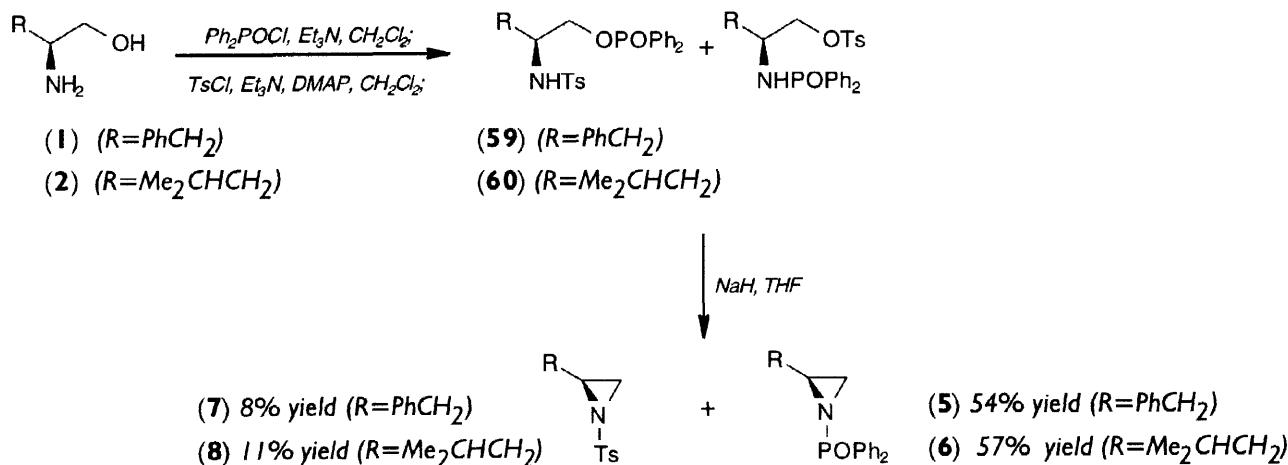
Scheme 3

The use of methanol in a Lewis acidic environment, however, yielded only methyl diphenylphosphinite (12), the product of attack at phosphorous in analogous fashion to the reaction of the variety of organometallic species mentioned before. These data encouraged us in our belief that Dpp aziridines could undergo efficient ring-opening reactions and, indeed, we were pleased to observe that the ammonium chloride-catalyzed ring-opening by azide furnished only an *amine* (20) rather than a phosphinamide product. In other words, the Dpp group had been cleaved during the reaction (and might have been removed prior to reaction, thereby accounting for the low yield we obtained), demonstrating in a categoric fashion the mild conditions required for its removal. An *in situ* deprotection under these timid reaction conditions is unheard in the chemistry of *N*-sulfonylaziridines.

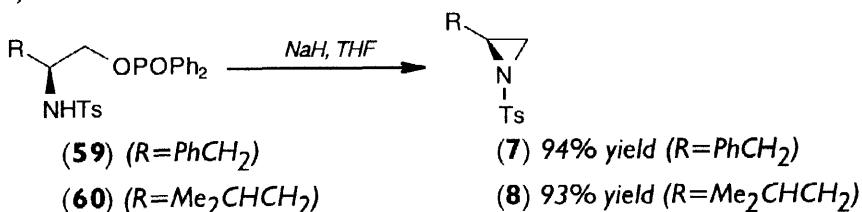

To offer a realistic alternative as an aziridine activator, however, we had to address the lack of **general** reactivity shown by Dpp aziridines when confronted with carbon-centred nucleophiles. As previously stated, the use of Grignard reagents was unproductive with regard to alkylative ring-cleavage, even in the presence of copper(I) salts at temperatures up to 20°C . When we raised the same copper-mediated reaction to 40°C (at which temperature, many organocupper species are reported to exhibit pronounced instability) smooth ring-opening reaction occurred in good yield. The reaction proved to be general, with aryl and α -branched Grignard reagents also ring-opening Dpp aziridines in good yields to give monochiral amines (23)–(35) (scheme 4 and Table 2). We can, as yet, offer no explanation for the effectiveness of this reaction under conditions which would normally decompose the nucleophile. The nature of the organometallic species involved is currently under investigation in our laboratories.

Scheme 4

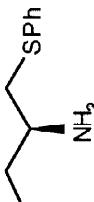
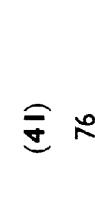
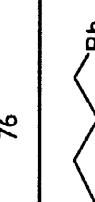
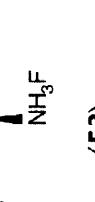
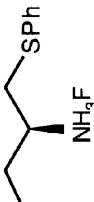
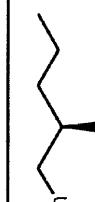
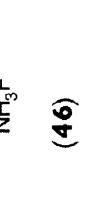
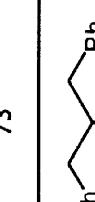
Having demonstrated that Dpp-aziridines could be ring-opened efficiently, we next turned our attention to deprotection. Our first attempts, employing the conditions described by Ramage *et al.*, were unsuccessful, presumably because these conditions were developed for deprotection of 2-aminoacid-derived phosphinamides where the neighbouring carboxyl group exerts an accelerating influence on the rate of the reaction. Thus, we turned to the Lewis acid-promulgated methanolysis reaction we had earlier observed when attempting ring-opening reactions and confirmed that these conditions could, indeed, be used to effect dephosphinylation. The general process involved treatment of phosphinamide with excess boron trifluoride etherate and methanol in CH_2Cl_2 at room temperature overnight. Acid washing of the product allowed removal of the phosphinate by-product by a simple extraction and furnished the amine in aqueous solution as the hydrofluoride salt. This

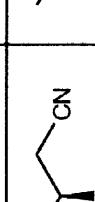
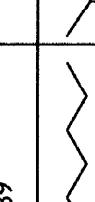

aqueous layer could be freeze-dried to give the hydrofluoride salts (36)-(58) in essentially pure form, usually greater than 80% (scheme 5); if desired, the free amine could be obtained by basification. These data are summarized in Table 3.

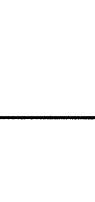
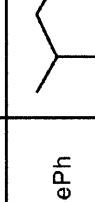
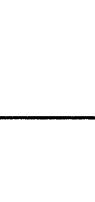
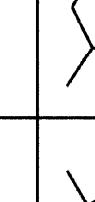
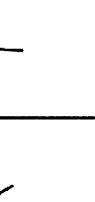
Scheme 5


OPTIMIZATION OF DPP AZIRIDINE SYNTHESIS

As mentioned, when we prepared our first Dpp aziridines (**5**) and (**6**) we always obtained small amounts of the corresponding *N*-tosyl aziridines (**7**) and (**8**). These compounds, we later reasoned, could only have been formed from sulphonamido phosphinites (**59**) and (**60**) (scheme 6) (which could be separated from their isomers by flash chromatography), which presumably arose from an *in situ* O→N Dpp migration.

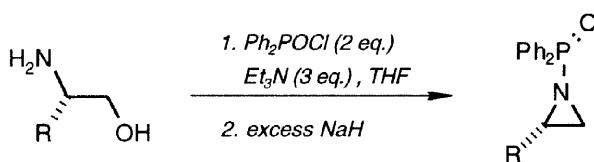














Scheme 6

This realization led us to conclude that a diphenylphosphinite leaving group must be sufficiently nucleofugal to participate in an S_N2 displacement reaction, which immediately led us to the notion of a ‘one-pot’ preparation of Dpp aziridines. Indeed, when pure (**59**) and (**60**) were exposed to the conditions previously used for cyclization, an excellent yield of N-tosyl aziridines (**7**) and (**8**) was obtained, reinforcing our proposal (scheme 7).

Scheme 7


TABLE 3-DEPROTECTION OF PHOSPHINAMIDES

*Dpp = diphenylphosphinylium; [§] Me₂CuLi used as nucleophile; [†] MeMgBr used as nucleophile; [#] Isolated yield of amine in %.

The notion of the method allowing a 'one-pot' preparation of *N*-Dpp aziridines was realized in practice by treating monochiral aminoalcohols with two equivalents of diphenylphosphinic chloride in the presence of triethylamine, and treating the crude bisphosphinylated products between 0°C and room temperature with sufficient excess sodium hydride to neutralize the triethylammonium hydrochloride formed during the reaction and effect cyclization. Under these conditions, a variety of monochiral Dpp aziridines were prepared efficiently (table 4). This method represents a highly efficient synthesis of these new reagents.

TABLE 4- PREPARATION OF *N*-DIPHENYLPHOSPHINYL AZIRIDINES FROM AMINOALCOHOLS

R	Yield of aziridine/%
Bn	(5), 86
	(6), 78
	(61), 67
Ph	(62), 52
Me	(63), 56
	(64), 79
	(65), 87
	(66), 60

CONCLUSION

We have prepared the first monochiral *N*-diphenylphosphinyl aziridines and demonstrated that they undergo ring-opening reactions with a range of heteroatom- and carbon-centred nucleophiles. The products of these ring-openings undergo dephosphinylation under comparatively mild conditions, thereby offering a useful practical alternative to the use of sulfonamide activation of aziridines.

ACKNOWLEDGEMENT

We acknowledge the financial support of the EPSRC (CASE award to AAC), Parke Davis Neuroscience Research Centre (Cambridge, UK) (studentship award to HMIO), the University of Bristol, the Nuffield Foundation and ZENECA (for an award from the Strategic Research Fund to JBS).

EXPERIMENTAL

General Techniques

All organic solvents were distilled prior to use and all reagents were purified by standard procedures. Light petroleum refers to the fraction with the boiling range 40°C to 60°C. Diethyl ether, THF and DME were distilled from sodium benzophenone ketyl; toluene from sodium; dichloromethane, triethylamine, di-isopropylamine and acetonitrile from calcium hydride, and pyridine and di-isopropylethylamine from potassium hydroxide.

Melting points were recorded on a Kofler hot-stage apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer 881 spectrophotometer. Optical rotations were measured using a Perkin Elmer 241MC polarimeter and are quoted in 10^{-1} deg $\text{cm}^2 \text{ g}^{-1}$. Mass spectra were recorded on a VG9090 mass spectrometer or on a Fisons Autospec machine. ^1H and ^{13}C nmr spectra were recorded on a Jeol GX-270 spectrometer or a Jeol L-300 spectrometer. Unless otherwise stated, deuteriochloroform was used as solvent and tetramethylsilane was used as the internal standard. Chemical shifts in ^1H nmr spectra are expressed as ppm downfield from tetramethylsilane, and in ^{13}C nmr, relative to the internal solvent standard. Coupling constants are quoted in Hz. ^{31}P spectra were recorded using a JEOL GX-400 spectrometer with chemical shifts reported relative to H_3PO_4 .

Reactions involving chemicals or intermediates sensitive to air and / or moisture were performed under a nitrogen atmosphere in flame- or oven-dried apparatus. Flash column chromatography²⁰³ was performed using Merck kieselgel 60 or Fluka kieselgel 60 silica. Analytical thin layer chromatography (tlc) was performed on precoated Merck kieselgel 60 F₂₅₄ aluminium backed plates and were visualised under U.V. conditions at 254 nm, and by staining with an acidic ammonium molybdate spray.

General method for the N-phosphinylation of amino alcohols (1) and (2)

To a solution of the amino alcohol (1 equivalent) in CH_2Cl_2 , under N_2 , at 0°C, was added DppCl (1 equivalent) and Et_3N (1 equivalent). The solution was stirred at 0°C for 1 hour, then at room temperature for 4 hours. The solution was then partitioned between CH_2Cl_2 and H_2O , the aqueous layer extracted with CH_2Cl_2 , the organic layers washed with brine, dried (Na_2SO_4), filtered and the solvent removed *in vacuo* to leave the N-Dpp amino alcohols which were used without further purification.

(S)-2-(Diphenylphosphinamido)-3-phenylpropan-1-ol (3). By following the general procedure described above amino alcohol (1) (0.20g, 1.32 mmol), diphenylphosphinic chloride (0.25 ml, 1.32 mmol) and Et_3N (0.18 ml, 1.32 mmol) in CH_2Cl_2 (15 ml) were reacted to yield alcohol (3) (0.40g, 86%) as a clear oil. R_f 0.05 (ethyl acetate); $[\alpha]_D^{23} -30.23$, (*c* 13 in CH_2Cl_2); ν_{max} (neat liquid) / cm^{-1} 3350 (OH), 2940 (NH and CH), 1580 (P=O), 1445 (P=O), 1180 (P=O), 1040, 980; δ_{H} (270 MHz, CDCl_3) 2.73 (1H, dd, *J* 9.0, 13.5, CH of CH_2Ph), 2.88 (1H, dd, *J* 2.5, 13.5, CH of CH_2Ph), 3.02-3.19 (1H, m, br, NH), 3.60 (1H, dd, *J* 6.0, 11.5, CH of

CH_2OH), 3.71-3.82 (2H, m, CH and one CH of CH_2OH), 4.07-4.89 (1H, s, br, OH), 7.05-7.52 and 7.70-7.83 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 39.21 (d, J 8.5, PhCH_2), 56.13 (CH), 65.78 (CH_2OH), 127.83, 127.99, 129.37, 131.10, 131.30, 131.45, 132.08, 138.50 (ArC); m / z (EI) 320 (M- CH_2OH , 32%), 120 (100), 120 (49), 91 (29) and 77 (34); Found 320.1200. $\text{C}_{20}\text{H}_{19}\text{NOP}$ requires 320.1204.

(S)-2-(Diphenylphosphinamido)-4-methyl-pentan-1-ol (4). By following the general procedure described above (S)-(+)-leucinol (**2**) (0.3g, 2.6 mmol), diphenylphosphinic chloride (0.55 ml, 2.6 mmol) and Et_3N (0.36 ml, 2.6 mmol) in CH_2Cl_2 (15 ml) were reacted to yield alcohol (**4**) (0.76g, 92%) as a clear oil. R_f 0.05 (ethyl acetate); $[\alpha]_D^{23}$ -26 (c 24 in CH_2Cl_2); ν_{max} (neat liquid) / cm^{-1} 3400 (OH), 2960 (NH and CH), 1600 (P=O), 1438 (P=O), 1125 (P=O); δ_{H} (270 MHz, CDCl_3) 0.72 and 0.82 (6H, 2 x d, J 6.5, Me_2CH), 1.32-1.48 (2H, m, Me_2CHCH_2), 1.66-1.79 (1H, m, Me_2CH), 3.05-3.13 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$), 3.65 (1H, dd, J 2.5, 11.5, CH of CH_2OH), 3.71-3.99 (2H, m, CH of CH_2OH and NH), 4.08-4.25 (1H, s, br, OH), 7.30-7.51 and 7.74-7.93 (10H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 21.98 and 22.55 (Me_2CH), 24.24 (Me_2CH), 42.50 (d, J 9.5, Me_2CHCH_2), 52.68 (CH_2OH), 66.73 (CH), 127.92, 127.99, 128.13, 128.32, 131.42, 131.56, 132.10, 132.24 (ArC); m / z (EI) 318 (M+I, 10%), 286 (M- CH_2OH , 98), 201 (100) and 77 (54); Found 286.1370. $\text{C}_{17}\text{H}_{21}\text{NOP}$ requires 286.1361.

*General method for the formation of N-diphenylphosphinyl aziridines (**5**) and (**6**)*

To a solution of the N-Dpp alcohol (**3**) or (**4**) in CH_2Cl_2 , under N_2 , at 0°C, was added TsCl (1.1 equivalents), DMAP (0.1 equivalents) and Et_3N (3 equivalents), and the solution was allowed to warm to room temperature with stirring overnight. The solution was then poured into aqueous citric acid (2% w / v) and extracted with CH_2Cl_2 . The organic layers were then washed with brine, dried (Na_2SO_4), filtered and the solvent removed *in vacuo* to leave a pale yellow residue. To a suspension of NaH (2 equivalents) in THF, under N_2 , at 0°C, was added a solution of this residue in THF. The solution was then allowed to warm to room temperature and stirred for 24 hours. The solution was then partitioned between H_2O and CH_2Cl_2 , the aqueous layer extracted with CH_2Cl_2 , the organic layers washed with brine, dried (Na_2SO_4), filtered, and the solvent removed *in vacuo* to leave a white solid which was purified by chromatography on silica gel with ethyl acetate-light petroleum (1:1) as eluent.

*(S)-N-Diphenylphosphinyl-2-benzyl aziridine (**5**).* R_f 0.6 (EtOAc); m.p. 103-105°C; (Found : C, 74.85; H, 6.08; N, 4.27. $\text{C}_{21}\text{H}_{20}\text{NPO}$.0.2 H_2O requires C, 74.85; H, 6.10; N, 4.16%). $[\alpha]_D^{23}$ -7.5 (c 8 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 2988 (CH), 1438, 1391, 1196, 1127 (P=O), 877; δ_{H} (270 MHz, CDCl_3) 2.00 (1H, ddd, J 12.0, 3.5, 1.0, CH of CH_2N), 2.57 (1H, ddd, J 17.5, 6.0, 1.0, CH of CH_2N), 2.84 (2H, d, J 5.5, CH_2Ph), 2.95-3.06 (1H, m, CH), 7.07-7.52 and 7.75-7.94 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 29.20 (d, J 6.5, CH_2), 36.00 (d, J 6.5, CH), 38.64 (d, J 4.5, CH_2), 126.38, 128.15, 128.27, 128.46, 128.69, 131.43, 131.57, 131.69, 133.54, 133.78, 137.67 (ArC); δ_{P} (161.7 MHz, CDCl_3) 32.06; m / z (EI) 333 (M⁺, 26%), 242 (8), 201 (69), 132 (100), 91 (31) and 77 (39); Found 333.1284. $\text{C}_{21}\text{H}_{20}\text{NOP}$ requires 333.1283.

*(S)-N-Diphenylphosphinyl-2-(2-methylpropyl) aziridine (**6**).* R_f 0.4 (ethyl acetate); m.p. 65-66°C. (Found : C, 72.10; H, 7.53; N, 4.60; P, 9.90. $\text{C}_{18}\text{H}_{22}\text{NOP}$ requires C, 72.22; H, 7.41; N, 4.68; P, 10.35%). $[\alpha]_D^{23}$ -8.7 (c 5 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 2928 (CH), 1438, 1402, 1161, 1126 (P=O); δ_{H} (270 MHz, CDCl_3)

0.76 and 0.83 (6H, 2 x d, J 6.5, Me₂CH), 1.18-1.46 (1H, m, Me₂CH), 1.50-1.58 (2H, m, Me₂CHCH₂), 1.92 (1H, ddd, J 12.5, 3.5, 1.5, CH of CH₂N), 2.56 (1H, ddd, J 17.5, 6.0, 1.5, CH of CH₂N), 2.66-2.78 (1H, m, CH), 7.28-7.53 and 7.75-7.98 (10H, m, ArH); δ C (67.5 MHz, CDCl₃) 21.73 and 22.92 (Me₂CH), 26.73 (Me₂CH), 29.96 (d, J 7.5, CH₂), 34.30 (d, J 6.5, CH), 41.68 (d, J 4.5, CH₂), 127.86, 128.11, 128.23, 128.29, 128.40, 131.34, 131.48, 131.54, 131.67, 133.75, 133.89 (ArC); δ P (161.7 MHz, CDCl₃) 31.98; m / z (EI) 299 (M⁺, 6%), 201 (100), 98 (82), 77 (47) and 42 (66); Found 299.1430. C₁₈H₂₂NOP requires 299.1439.

Reactions With Nucleophiles Of Aziridines (5) And (6)

1. *With lower order cuprate reagents.* To dry CuI (5 equivalents) in a flame dried flask, under N₂, was added ether (10 ml) and the suspension was degassed by freeze thawing. For the formation of Me₂CuLi the suspension was then cooled to 0 °C and MeLi (0.8M, 3.2 ml, 2.56 mmol, 12 equivalents) added dropwise (the solution becomes yellow after the addition of the first equivalent of MeLi, colourless after the addition of the second equivalent). For the formation of Ph₂CuLi or Bu₂CuLi the suspension was cooled to -10 °C and PhLi or BuLi (12 equivalents) was added dropwise. In all cases the suspension was stirred for 20 minutes prior to further cooling to -78 °C. A degassed solution of the aziridine (1 equivalent) in ether (2 ml) was then added dropwise. The solution was stirred at -78 °C for 1 hour then at 0 °C for 5 hours, after which time it was quenched by the addition of a saturated aqueous solution of NH₄Cl. The solution was partitioned between NH₄Cl (aq) and ether, the aqueous layer extracted with ether (3 x 15 ml), the organic layers washed with brine (30 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo* to leave a pale yellow oil which was purified by chromatography on silica gel with ethyl acetate-light petroleum (1:1) as eluent

(R)-1-Phenyl-2-(diphenylphosphinamido)butane (9). By following the general procedure described above aziridine (5) (0.07g, 0.21 mmol) and Me₂CuLi, formed from CuI (0.20g, 1.1 mmol) and MeLi (2.6 mmol), in ether (10 ml) were reacted to yield (9) as a white solid (0.065g, 86%). R_f 0.3 [ethyl acetate-light petroleum (1:1)]; m.p. 121-122 °C; (Found : C, 75.32; H, 6.72; N, 3.75. C₂₂H₂₄NPO requires C, 75.62; H, 6.92; N, 4.01%). $[\alpha]_D^{23}$ -1, (c 5 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3366 (NH), 3060, 2964 (CH), 1598, 1438, 1208, 1124 (P=O), 878, 698; δ H (270 MHz, CDCl₃) 0.98 (3H, t, J 7.3, MeCH₂), 1.53-1.63 (2H, m, CH₂CH₃), 1.80-2.02 (1H, m, NH), 2.80 (1H, dd, J 6.5, 13.5, CH of CH₂Ph), 2.89 (1H, dd, J 13.5, 5.5, CH of CH₂Ph), 3.16-3.28 (1H, m, CH), 7.08-7.93 (15H, m, ArH); δ C (67.5 MHz, CDCl₃) 10.17 (Me), 29.34 (d, J 4.3, CH₂), 42.45 (d, J 5.4, CH₂), 54.44 (CH), 126.34, 128.30, 128.45, 128.50, 129.88, 131.54, 131.70, 132.05, 132.13, 132.18, 132.26, 138.46 (ArC); δ P (161.7 MHz, CDCl₃) 21.45; m / z (Cl) 378 (M+29, 11%), 350 (M+1, 61), 320 (10), 258 (100), 201 (40) and 91 (14); Found: 350.1673. C₂₂H₂₅NOP requires 350.1674.

(R)-2-Methyl-4-(diphenylphosphinamido)hexane (10). By following the general procedure described above aziridine (6) (0.1g, 0.33 mmol) and Me₂CuLi, prepared from CuI (0.32g, 1.7 mmol) and MeLi (4.0 mmol) were reacted in ether (10 ml) at 0 °C to yield (10) (0.08g, 73%) as a white solid. R_f 0.40 (ethyl acetate); m.p. 121-122 °C; (Found : C, 72.36; H, 8.43; N, 4.21. C₁₉H₂₆NPO requires C, 72.36; H, 8.31; N, 4.44%). $[\alpha]_D^{19.5}$ 14.3, (c 2 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3366 (NH), 2964 (CH), 1330, 1180 (P=O), 721; δ H (270MHz, CDCl₃) 0.78 and 0.80 (6H, 2 x d, J 6.5 and 7.0, Me₂CH), 0.90 (3H, t, J 7.5, CH₃CH₂), 1.21-1.78 (5H, m, Me₂CHCH₂CHCH₂CH₃), 2.62 (1H, dd, J 6.0, 10.5, NH), 2.99-3.10 (1H, m, CH), 7.40-7.52 and 7.76-7.96 (10H, m, ArH); δ C (67.5 MHz, CDCl₃) 9.28 (MeCH₂), 22.59 and 22.76 (Me₂CH), 24.66

(Me₂CHCH₂), 29.82 (d, *J* 3.5, Me₂CHCH₂), 46.10 (d, *J* 5.4, MeCH₂), 50.84 (CH), 128.26, 128.45, 131.62, 132.05, 132.19, 132.35 (ArC); m/z (Cl) 344 (M+29, 18%), 316 (M+1, 100), 286 (93), 258 (70) and 201 (53); Found: 286.1362. C₁₇H₂₁NOP requires 286.1361; Found 258.1039. C₁₅H₁₇NOP requires 258.1048.

P-Butyl-P, P-Bis-phenylphosphine oxide (II). By following the general procedure described above for the reaction of aziridines with lower order cuprate reagents, aziridine (5) (0.05g, 0.17 mmol) and Bu₂CuLi, formed from CuI (0.16g, 0.84 mmol) and BuLi (0.87 ml, 2.3M, 2.0 mmol), were reacted in ether to yield (II) (0.024g, 61%) as a pale brown solid. R_f 0.10 [ethyl acetate-light petroleum (1:1)]; m.p. 85–85.4 °C; ν_{max} (CCl₄) / cm⁻¹ 2961 (CH), 1437, 1196, 1120 (P=O), 620; δ _H (270 MHz, CDCl₃) 0.89 (3H, t, *J* 7.5, MeCH₂), 1.38–1.52 (2H, m, MeCH₂), 1.56–1.69 (2H, m, MeCH₂CH₂), 2.21–2.32 (2H, m, MeCH₂CH₂CH₂), 7.43–7.78 (10H, m, ArH); δ _C (67.5 MHz, CDCl₃) 13.49 (MeCH₂), 23.41 (d, *J* 3.5, CH₂), 24.00 (d, *J* 15.0, CH₂), 29.35 (d, *J* 72.0, CH₂), 128.62, 130.65, 130.78, 131.53, 132.51 (ArC); δ _P (161.7 MHz, CDCl₃) ; m/z (El) 258 (M⁺, 14%), 215 (100) and 201 (65); Found 258.1174. C₁₆H₁₉PO requires 258.1173. Compound (II) was also produced in 83% when aziridine (6) (0.1g, 0.33 mmol) was exposed to the above conditions. When the above experiment was repeated with aziridine (8) using 1 equivalent of Bu₂CuLi the same product resulted in comparable yield.

Triphenylphosphine oxide (I3). By following the general procedure described above for the reaction of aziridines with lower order cuprate reagents, aziridine (5) (0.05g, 0.15 mmol) and Ph₂CuLi, formed from CuI (0.14g, 0.75 mmol) and PhLi (1.5 ml, 1M, 1.5 mmol) were reacted in ether to yield (I3) (0.03g, 76%) as a white solid. m.p. 79–80 °C (lit., 207 79–81 °C); δ _H (270 MHz, CDCl₃) 7.02–7.77 (ArH); m/z (Cl) 279 (M+1, 100%), 201 (31). When the above experiment was repeated using only 1 equivalent of Ph₂CuLi the same product resulted in comparable yields.

2. *Reaction with organolithium species.* To a solution of the aziridine (5) (0.05g, 0.15 mmol) in THF (10 ml) under N₂, at -78 °C was added PhLi (0.3 ml, 0.45 mmol) dropwise. The solution was stirred at -78 °C for 1.5 hours after which time H₂O (5 ml) was added. The aqueous layer was then extracted with ether (3 x 15 ml), the organic layers washed with brine (30 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo* to leave a pale yellow oil which was purified by chromatography on silica gel with ethyl acetate-light petroleum (1:1) as eluent to give (I3) (0.032g, 77%) as a white solid. The analytical data for this compound was identical to that recorded above.

Reaction of aziridine (6) with BuLi/CeCl₃. To freshly dried CeCl₃ (0.44g, 1.17 mmol), under N₂, was added THF (10 ml) dropwise. The solution was cooled to -78 °C and BuLi (0.59 ml, 1 mmol) added dropwise. The solution was stirred at -78 °C for 1 hour and then a solution of the aziridine (6) (0.10g, 0.33 mmol) in THF (2 ml) added dropwise. The solution was stirred at -78 °C for 1 hour. H₂O (5 ml) was then added cautiously and the aqueous layer extracted with ether (3 x 15 ml), the organic layers washed with brine (30 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo* to leave a pale yellow oil which was purified by chromatography on silica gel with ethyl acetate as eluent to yield (II) (0.068g, 80%) as a pale yellow gum. The analytical data for this compound was identical to that recorded above.

Methyldiphenylphosphonate (12). To a solution of aziridine (5) (0.10g, 0.3 mmol) in CH_2Cl_2 (3 ml) under N_2 at 0 °C was added MeOH (5 ml) and BF_3OEt_2 (3 drops). The solution was stirred at 0 °C to room temperature overnight after which time H_2O (5 ml) was added and the solution extracted with further portions of CH_2Cl_2 (3 x 10 ml). The organic layers were combined, washed with brine (5 ml), dried (Na_2SO_4), filtered and the solvent removed *in vacuo* to leave a yellow gum. This was purified by column chromatography on silica gel with ethyl acetate-light petroleum (1:1) as eluent to yield (12) (0.069g, 99%) as a clear oil. R_f 0.2 [ethyl acetate-light petroleum (1:1)]; ν_{max} (oil) / cm^{-1} 2948-2848 (aromatic CH), 1438, 1223, 1129, 1030 (P=O), 799, 754, 730; δ_{H} (270 MHz, CDCl_3) 3.76 (3H, d, J 11.0, OCH_3), 7.41-7.56 and 7.77-7.86 (10H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 51.45 (d, J 6.5, OCH_3), 128.40, 128.59, 129.89, 131.50, 131.64, 131.91, 132.13, 132.16 (ArC); δ_{P} (161.7 MHz, CDCl_3) 33.18; m / z (EI) 232 (M^+ , 54%), 231 (100), 199 (37), 155 (36) and 77 (89); Found 232.0645. $\text{C}_{13}\text{H}_{13}\text{O}_2\text{P}$ requires 232.0653.

The above compound (12) was also formed in 65% yield by the reaction of aziridine (6) (0.10g, 0.34 mmol) with BF_3OEt_2 (3 drops) in MeOH (3 ml) and CH_2Cl_2 (3 ml) under the conditions described above.

3. With MeMgI . To Mg (5 equivalents) in ether (5 ml), at 0 °C, under N_2 , was added MeI (5.4 equivalents) in ether (1 ml). The solution was stirred at room temperature for 0.5 hour, after which time the formation of MeMgI was complete. The ethereal solution was then added to a solution of the aziridine (5) or (6) (1 equivalent) in THF (15 ml) at 0 °C, causing precipitation of MgI_2 . The suspension was stirred at room temperature for 20 hours, after which time the reaction was quenched by the addition of NH_4Cl (sat, aq, 10 ml), and extracted with ether (3 x 20 ml). The organic layers were washed with brine (20 ml), dried (Na_2SO_4), filtered, and the solvent removed *in vacuo* to leave a pale yellow oil.

(S)-1-Iodo-2-(diphenylphosphinamido)-3-phenylpropane (14). By following the general procedure described above aziridine (5) (0.10g, 0.30 mmol) and MgI_2 , formed from Mg (0.036g, 1.5 mmol) and MeI (0.10 ml, 1.61 mmol) in ether / THF, were reacted to yield (14) (0.09g, 68%) as a pale yellow oil. R_f 0.53 (EtOAc); $[\alpha]_D^{23}$ -30.5 (c 6 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 3363 (NH), 3060, 1438, 1215 (P=O), 1123, 908, 698; δ_{H} (270 MHz, CDCl_3) 2.85-3.05 (3H, m, CH_2Ph plus NH), 3.20-3.24 (1H, m, CH), 3.33 (1H, dd, J 10.0, 2.5, CH of CH_2I), 3.50 (1H, dd, J 10.0, 5.0, CH of CH_2I), 7.08-7.53 and 7.63-7.88 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 18.03 (CH_2I), 43.05 (d, J 6.5, PhCH_2), 51.97 (CH), 126.78, 128.37, 128.42, 128.57, 129.40, 131.65, 131.80, 131.94, 132.10, 132.24 (ArC); δ_{P} (161.7 MHz, CDCl_3) 21.90; m / z (EI) 370 (M-PhCH_2 , 100%), 334 (19), 243 (32) and 201 (97); Found 369.9874. $\text{C}_{14}\text{H}_{14}\text{NOPI}$ requires 369.9858.

(S)-1-Iodo-2-(diphenylphosphinamido)-4-methylpentane (15). By following the general procedure described above aziridine (6) (0.10g, 0.33 mmol) and MgI_2 , formed from Mg (0.04g, 1.67 mmol) and MeI (0.11 ml, 1.79 mmol) in ether / THF were reacted to yield (15) (0.17g, 77%) as a pale yellow oil. R_f 0.54 (ethyl acetate); $[\alpha]_D^{23}$ -29.9 (c 9 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 2958 (NH), 1438, 1371, 1258, 1215, 1123, 1047 (P=O), 908, 730; δ_{H} (270 MHz, CDCl_3) 0.81 and 0.83 (6H, 2 x d, J 6.5, Me_2CH), 1.32-1.52 (2H, m, Me_2CHCH_2), 1.61-1.70 (1H, m, CH), 2.70-2.81 (1H, m, br, NH), 3.09-3.19 (1H, m, CH), 3.39 (1H, dd, J 10.0, 2.5, CH of CH_2I), 3.56 (1H, dd, J 4.5, 10.0, CH of CH_2I), 7.41-7.55 and 7.69-7.96 (10H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 20.46 (d, J 2.1, CH_2I), 22.24 and 22.47 (Me_2CH), 24.33 (Me_2CH), 46.81 (Me_2CHCH_2 , d, J 6.5), 47.81 (CH), 128.35, 128.38, 128.45, 128.54, 128.57, 128.64, 131.18, 131.59, 131.67, 131.81, 131.96,

132.11, 132.24 (ArC); δ_P (161.7 MHz, CDCl₃) 22.11; m/z (EI) 427 (M⁺, 3%), 370 (M-57, 61%), 300 (M-I, 52%), 286 (74) and 201 (100); Found: 427.0551. C₁₈H₂₃NOPI requires 427.0562.

4. *With lithium thiophenolate.* To a solution of thiophenol (3 equivalents) in THF (8 ml), under N₂, at -42°C was added BuLi (3.3 equivalents) dropwise. The solution was stirred at -42°C for 0.5 hours, after which time a solution of aziridine (**5**) or (**6**) (1 equivalent) in THF (1 ml) was added. The solution was gradually warmed up to room temperature and stirred overnight. The solution was then partitioned between H₂O (10 ml) and EtOAc (15 ml), the aqueous layer extracted with EtOAc (2 x 10 ml), the organic layers washed with brine (15 ml), dried (Na₂SO₄), filtered, and the solvent removed *in vacuo* to leave a pale yellow oil which was purified by chromatography on silica gel [ethyl acetate-light petroleum (1:1)].

(S)-*1*-Thiophenyl-2-(diphenylphosphinamido)-3-phenylpropane (**16**). By following the procedure described above aziridine (**5**) (0.06g, 0.18 mmol) and the anion of thiophenol (0.06 ml, 0.54 mmol) were reacted to yield (**16**) (0.41g, 52%) as a clear oil. R_f 0.2 [ethyl acetate-light petroleum (1:1)]; (Found : C, 72.69; H, 6.08; N, 2.97. C₂₇H₂₆NPOS.0.2H₂O requires C, 72.52; H, 5.95; N, 3.13%). $[\alpha]_D^{23}$ -5.8, (c 2.4 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3365 (NH), 1207 (P=O); δ_H (270 MHz, CDCl₃) 2.93 (1H, dd, *J* 6.5, 13.5, CH of CH₂Ph), 3.01-3.16 (3H, m, NH and CH of CH₂Ph and CH of CH₂SPh), 3.33 (1H, dd, *J* 4.0, 13.5, CH of CH₂SPh), 3.40-3.56 (1H, m, br, CH), 7.03-7.60 and 7.72-7.82 (20H, m, ArH); δ_C (67.5 MHz, CDCl₃) 39.63 (d, *J* 4.5, PhCH₂), 41.37 (d, *J* 5.5, CH₂), 52.48 (CH), 126.00, 126.62, 128.32, 128.40, 128.50, 128.57, 129.00, 129.09, 129.81, 131.83, 131.97, 132.08, 132.21, 135.78, 137.65 (ArC); δ_P (161.7 MHz, CDCl₃) 22.30; m/z 443 (M⁺, 2%), 352 (M-PhCH₂, 38%), 320 (M-PhSCH₂, 89%), 218 (50) and 201 (100); Found 443.1472; C₂₇H₂₆NOPS requires 443.1473.

(S)-*1*-Thiophenyl-2-(diphenylphosphinamido)-4-methylpentane (**17**). By following the general procedure described above aziridine (**6**) (0.10g, 0.33 mmol) and the anion of thiophenol (0.11g, 1.00 mmol) were reacted to yield (**17**) (0.13g, 99%) as a clear oil. R_f 0.5 (ethyl acetate); $[\alpha]_D^{23}$ -23.4, (c 11 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3361 (NH), 1207 (P=O); δ_H (270 MHz, CDCl₃) 0.67 and 0.80 (6H, 2 x d, *J* 6.5, Me₂CH), 1.38-1.48 (1H, m, Me₂CH), 1.54-1.77 (2H, m, Me₂CHCH₂), 2.45 (1H, m, br, NH), 3.06-3.19 (2H, m, CH plus CH of CH₂SPh), 3.37 (1H, dd, *J* 3.5, 14.0, CH of CH₂SPh), 7.11-7.51 and 7.80-7.88 (15H, m, ArH); δ_C (67.5 MHz, CDCl₃) 22.12 and 22.73 (Me₂CH), 24.55 (Me₂CH), 41.50 (d, *J* 3.0, CH₂), 45.25 (d, *J* 6.5, CH₂), 49.11 (CH), 128.24, 128.29, 128.42, 128.48, 128.88, 129.53, 131.72, 131.80, 131.94, 132.10, 136.10 (ArC); δ_P (161.7 MHz, CDCl₃) 21.63; m/z (EI) 409 (M⁺, 1%), 286 (M-PhSCH₂, 100%), 192 (19), 149 (20), 123 (6) and 77 (23); Found 409.1618. C₂₄H₂₈NOPS requires 409.1629.

5. *With sodium phenyl selenide.* To a solution of diphenyldiselenide (1.5 equivalents) in ethanol (5 ml), under N₂, at room temperature, was added NaBH₄ portionwise (3 equivalents) and stirring was continued until the bright yellow solution became colourless. A solution of aziridine (**5**) or (**6**) (1 equivalent) in THF (3 ml) was then added, at 0°C, and the solution was allowed to warm to room temperature overnight. The solution was then partitioned between H₂O (20 ml) and EtOAc (20 ml), the aqueous layer extracted with EtOAc (2 x 20 ml), the organic layers combined, washed with brine, dried (Na₂SO₄), filtered and the solvent removed *in*

vacuo to leave a yellow oil which was purified by chromatography on silica gel with light petroleum then gradient elution to ethyl acetate-light petroleum (1:1).

(S)-1-Selenophenyl-2-(diphenylphosphinamido)-3-phenylpropane (18). By following the general procedure described above aziridine (5) (0.10g, 0.30 mmol) and PhSeNa, formed from PhSeSePh (0.14g, 0.45 mmol) and NaBH₄ (0.03g, 0.90 mmol), were reacted to yield (18) as a pale yellow solid (0.13g, 92%). *R_f* 0.22 [ethyl acetate-light petroleum (1:1)]; m.p. 124–125 °C. (Found: C, 66.13; H, 5.42; N, 2.75; P, 6.09. C₂₇H₂₆NPOSe requires C, 66.12; H, 5.34; N, 2.86; P, 6.32%). $[\alpha]_D^{23}$ -9.4 (c 9 in CH₂Cl₂); ν_{max} (neat liquid) / cm⁻¹ 3337 (NH), 3167, 2926, 1580, 1477, 1435, 1273, 1181, 1122, 1070 (P=O), 727, 695; δ_{H} (270 MHz, CDCl₃) 2.97 (1H, dd, *J* 6.5, 13.5, CH of CH₂Ph), 3.03 (1H, dd, *J* 6.5, 13.5, CH of CH₂Ph), 3.09 (1H, dd, *J* 6.5, 12.5, CH of CH₂SePh), 3.19 (1H, dd, *J* 6.0, 11.0, NH), 3.29 (1H, dd, *J* 6.5, 12.5, CH of CH₂SePh), 3.43–3.56 (1H, m, CH), 7.06–7.57 and 7.72–7.94 (20H, m, ArH); δ_{C} (67.5 MHz, CDCl₃) 35.14 (d, *J* 4.5, CH₂), 42.28 (d, *J* 5.5, CH₂), 52.87 (CH), 126.51, 126.83, 128.24, 128.30, 128.42, 128.50, 129.15, 129.69, 131.56, 131.59, 131.67, 131.77, 131.91, 132.02, 132.16, 132.32, 137.80 (ArC); δ_{P} (161.7 MHz, CDCl₃) 21.80; m/z (EI) 491 (M+1, 3%), 400 (44), 201 (100), 91 (44) and 77 (31); Found 491.0926. C₂₇H₂₆NPOSe requires 491.0917.

(S)-1-Selenophenyl-2-(diphenylphosphinamido)-4-methylpentane (19). By following the general procedure described above aziridine (6) (0.10g, 0.33 mmol) and PhSeNa, formed from PhSeSePh (0.16g, 0.50 mmol) and NaBH₄ (0.04g, 1.0 mmol), were reacted to yield (19) as a clear oil (0.11g, 70%). *R_f* 0.3 (ethyl acetate); (Found: C, 63.02; H, 6.37; N, 3.52. C₂₄H₂₈NPO requires C, 63.16; H, 6.18; N, 3.07%). $[\alpha]_D^{23}$ -16 (c 6 in CH₂Cl₂); ν_{max} (neat liquid) / cm⁻¹ 3167 (NH), 1580, 1435 (P=O), 1181 (P=O), 666 (ArH); δ_{H} (270 MHz, CDCl₃) 0.76–0.77 (6H, 2 x d, *J* 6.5, Me₂CH), 1.21–1.26 (1H, m, Me₂CH), 1.38–1.70 (2H, m, Me₂CHCH₂), 3.18 (1H, dd, *J* 6.5, 13.0, CH of CH₂SePh), 3.34 (1H, dd, *J* 13.0, 3.0, CH of CH₂SePh), 3.40–3.49 (2H, m, Me₂CHCH₂CHNHDpp), 7.36–7.53 and 7.73–7.97 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl₃) 22.27 and 22.52 (Me₂CH), 24.65 (Me₂CH), 41.76 (d, *J* 4.5, CH₂), 46.06 (d, *J* 6.5, CH₂), 49.21 (CH), 126.89, 128.16, 128.26, 128.34, 128.45, 129.08, 131.34, 131.53, 131.61, 131.73, 131.80, 131.94, 132.11, 132.26, 132.75 (ArC); m/z (EI) 457 (M⁺, 6%), 286 (100), 218 (33) and 201 (96); Found: 457.1065. C₂₄H₂₈NOPSe requires 457.1074.

6. With azide anion

(S)-1-Azido-3-phenyl-propan-2-amine (20). To a solution of aziridine (5) (0.10g, 0.30 mmol) in EtOH-H₂O (12 ml, 3:1) was added NaN₃ (0.06g, 0.90 mmol, 3 equivalents) and NH₄Cl (0.05g, 0.90 mmol, 3 equivalents). The solution was then heated under reflux for 5 hours, after which time the solution was partitioned between CH₂Cl₂ and H₂O, the aqueous layer extracted with CH₂Cl₂ (2 x 15 ml), the combined organic layers washed with brine (20 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo*. The crude product was then purified by chromatography on silica gel with EtOAc as the eluent to leave (20) as a clear oil (0.06g, 51%); *R_f* 0.1 (EtOAc); $[\alpha]_D^{23}$ 17.4 (c 2 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3386 (NH), 2921, 2103 (N₃), 1603, 1493, 1445 (P=O), 1277, 1127, 699; δ_{H} (270 MHz, CDCl₃) 1.40–1.43 (2H, m, br, NH₂), 2.59 (1H, dd, *J* 7.5, 13.5, CH of CH₂Ph), 2.80 (1H, dd, *J* 4.5, 13.5, CH of CH₂Ph), 3.20–3.26 (2H, m, CH and CH of CH₂N₃), 3.40 (1H, dd, *J* 5.5, 13.0, CH of CH₂N₃), 7.07–7.36 (5H, m, ArH); δ_{C} (67.5 MHz, CDCl₃)

52.38 (CH), 56.92 (CH₂), 65.83 (CH₂), 126.67, 128.65, 129.18, 137.81 (ArC); m / z (EI) 149 (M-N₂⁺, 18%), 132 (38), 120 (28), 91 (42), 84 (69) and 49 (100).

7. With TMSCN. To freshly dried CeCl₃ (0.25 equivalents), under N₂, was added THF (7 ml) and the solution was cooled to -78°C. BuLi (0.75 equivalents) was then added dropwise and the yellow solution allowed to stir at -78°C for 15 minutes. TMSCN (2 equivalents) was added dropwise, followed by a solution of aziridine (5) or (6) (1 equivalent) in THF (1 ml). The solution was then heated under reflux for 4 hours, after which time H₂O (20 ml) was added to the cooled solution. The solution was then extracted with ether (3 x 25 ml), the organic layers washed with brine (30 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo* to leave a brown oil which was purified by chromatography on silica gel with EtOAc as eluent to leave the required product as a pale brown oil.

(S)-*l*-Cyano-2-(diphenylphosphinamido)-3-phenylpropane (21). By following the general procedure described above aziridine (5) (0.10g, 0.30 mmol), TMSCN (0.09ml, 0.68 mmol) and Ce(CN)₃ (0.08 mmol) were reacted to yield (21) (0.06g, 56%) as a pale brown oil. R_f 0.20 (EtOAc); [α]_D²³ -12 (c 5 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3165 (NH), 3060, 2926 (CH), 2248 (CN), 1437, 1263, 1218, 1126, 1045, 700; δ_H (270MHz, CDCl₃) 2.43 (1H, dd, J 4.0, 16.5, CH of CH₂Ph), 2.66 (1H, dd, J 16.5, 5.5, CH of CH₂Ph), 2.84 (1H, dd, J 6.5, 13.5, CH of CH₂CN), 2.91 (1H, dd, J 13.5, 6.5, CH of CH CN), 3.13 (1H, dd, J 6.5, 11.0, NH), 3.37-3.50 (1H, m, CH), 7.01-7.50 and 7.64-7.73 (15H, m, ArH); δ_C (67.5 MHz, CDCl₃) 25.66 (CH₂), 42.12 (d, J 7.5, CH₂), 49.59 (CH), 117.49 (CN), 127.19, 128.50, 128.58, 128.70, 128.76, 128.83, 129.43, 131.57, 131.72, 132.08, 132.24, 132.91, 136.46 (ArC); δ_P (161.7 MHz, CDCl₃) 23.14; m / z (EI) 360 (M⁺, 3%), 320 (M-CH₂CN, 13), 269 (M-PhCH₂, 71), 201 (100), 91 (20) and 77 (26); Found 360.1392. C₂₂H₂₁N₂OP requires 360.1392.

(S)-*l*-Cyano-2-(diphenylphosphinamido)-4-methylpentane (22). By following the general procedure described above aziridine (6) (0.10g, 0.33 mmol), TMSCN (0.09ml, 0.68 mmol) and Ce(CN)₃ (0.08 mmol) were reacted to yield (22) (0.06g, 58%) as a pale brown oil. R_f 0.39 (ethyl acetate); [α]_D²⁰ -4.1 (c 5.8 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 2871 (CH and NH), 2247 (CN), 1598, 1437, 1208, 1125, 1031, 870; δ_H (270 MHz, CDCl₃) 0.81 and 0.86 (6H, 2 x d, J 6.5 and 6.5, Me₂CH), 1.35-1.83 (3H, m, Me₂CHCH₂), 2.56 (1H, dd, J 3.5, 16.5, CH of CH₂CN), 2.86 (1H, dd, J 5.5, 16.5, CH of CH₂CN), 3.11-3.18 (1H, m, NH), 3.36-3.48 (1H, m, CH), 7.43-7.57 and 7.83-7.94 (10H, m, ArH); δ_C (67.5 MHz, CDCl₃) 21.98 and 22.57 (Me₂CH), 24.55 (Me₂CH), 26.76 (Me₂CHCH₂), 45.37 (d, J 7.5, CH₂CN), 45.95 (CH), 117.56 (CN), 128.53, 128.57, 128.70, 128.76, 131.57, 131.72, 132.15, 132.23, 132.29 (ArC); δ_P (161.7 MHz, CDCl₃) 22.81; m / z (EI) 326 (M⁺, 10%), 286 (M-CN, 66), 269 (24), 201 (100) and 77 (28); Found: 326.1545. C₁₉H₂₃N₂OP requires 326.1548.

8. General Method for copper-catalysed Grignard reactions. To CuBr·SEt₂ (2 mol%), under N₂, at room temperature was added a solution of *N*-Dpp aziridine (5) or (6) in THF (typically 0.3 mmol in 5 ml THF). The solution was then cooled to -40°C and a solution of Grignard reagent in THF added dropwise (5 equivalents). The solution was warmed to room temperature over 10 minutes and then heated under reflux until tlc indicated the reaction to have gone to completion (typically 4 hours). The reaction was then quenched by the

addition of a saturated aqueous solution of NH_4Cl (5 ml), and the aqueous layer extracted with EtOAc (3×15 ml). The combined organic layers were washed with brine (10 ml), dried (Na_2SO_4), filtered and the solvent removed *in vacuo*. The products were purified by column chromatography using EtOAc as the eluting solvent.

(R)-1-Phenyl-2-(diphenylphosphinamido)butane (9). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), $\text{CuBr} \cdot \text{SEt}_2$ (0.001g, 0.006 mmol) and methyl magnesium bromide (0.75 ml, 2M, 1.5 mmol) were reacted in THF for 4 hours to leave (9) (0.07g, 67%) as a white solid. The analytical data obtained for this compound was fully consistent with that reported previously.

(R)-2-Methyl-4-(diphenylphosphinamido)hexane (10). By following the general method described above aziridine (6) (0.1g, 0.33 mmol), $\text{CuBr} \cdot \text{SEt}_2$ (0.0011g, 0.007 mmol) and methyl magnesium bromide (0.83 ml, 2M, 1.6 mmol) were reacted in THF for 3 hours to leave (10) (0.076g, 73%) as a white solid. The analytical data recorded for this compound was fully consistent with that reported previously.

(R)-1-Phenyl-2-(diphenylphosphinamido)pentane (23). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), $\text{CuBr} \cdot \text{SEt}_2$ (0.001g, 0.006 mmol) and ethyl magnesium bromide (5 equivalents), prepared from Mg (0.04g, 1.5 mmol) and 1-bromoethane (0.11 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (23) (0.08g, 73%) as a white solid. R_f 0.3 (ethyl acetate); m.p. 123–124°C; (Found: C, 76.43; H, 7.44; N, 3.66. $\text{C}_{23}\text{H}_{26}\text{NPO}$ requires C, 76.01; H, 7.21; N, 3.85%). $[\alpha]_D^{19.5} -3.03$, (*c* 3 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 2900 (NH), 2820 (CH), 1540, 1420, 1190, 1140 ($\text{P}=\text{O}$), 715; δ_{H} (270 MHz, CDCl_3) 0.85 (3H, t, *J* 7.5, MeCH_2), 1.21–1.63 (4H, m, MeCH_2CH_2), 2.23–3.04 (3H, m, PhCH_2 and NH), 3.16–3.33 (1H, m, CH), 7.00–7.98 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 13.90 (CH_3), 19.00 (MeCH_2), 38.84 (d, *J* 4.5, $\text{PhCH}_2\text{CH}_2\text{CH}_2$), 43.04 (d, *J* 5.5, PhCH_2), 52.89 (PhCH_2CH), 126.24, 126.35, 128.11, 128.23, 128.38, 128.43, 128.57, 128.65, 129.86, 131.40, 131.53, 131.61, 131.65, 132.02, 132.16 (ArC); δ_{P} (161.7 MHz, CDCl_3) 21.33; *m/z* (Cl) 392 ($\text{M}+29$, 25%), 364 ($\text{M}+1$, 100), 334 (47), 272 (98), 201 (73) and 91 (31); Found: 364.1846. $\text{C}_{23}\text{H}_{27}\text{NPO}$ requires 364.1830.

(R)-2-Methyl-4-(diphenylphosphinamido)-heptane (24). By following the general procedure described above aziridine (6) (0.1g, 0.33 mmol), $\text{CuBr} \cdot \text{SEt}_2$ (0.0011g, 0.007 mmol) and ethyl magnesium bromide (5 equivalents), prepared from Mg (0.05g, 1.7 mmol) and 1-bromoethane (0.12 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (24) (0.08g, 71%) as a white solid. R_f 0.30 (ethyl acetate); m.p. 59–60°C; (Found: C, 71.68; H, 8.49; N, 3.69; P, 9.14. $\text{C}_{20}\text{H}_{28}\text{NPO} \cdot 0.25\text{H}_2\text{O}$ requires C, 71.93; H, 8.60; N, 4.19; P, 9.28%). $[\alpha]_D^{19.5} -25.39$ (*c* 3.3 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 3440 (NH), 3005, 2980 (CH), 1525, 1450, 1240, 1140, 1050 ($\text{P}=\text{O}$), 659; δ_{H} (270 MHz, CDCl_3) 0.77 and 0.79 (6H, 2 x d, *J* 6.5 and 6.5, Me_2CH), 0.85 (3H, t, *J* 7.5, MeCH_2), 1.24–1.57 and 1.69–1.81 (8H, m, $\text{Me}_2\text{CHCH}_2\text{CHCH}_2\text{CH}_2\text{CH}_3$), 2.60–2.66 (1H, m, NH), 3.03–3.09 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$), 7.27–7.51 and 7.86–7.97 (10H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 14.00 (MeCH_2), 18.33 (MeCH_2), 22.55 and 22.63 (Me_2CH), 24.62 (Me_2CH), 39.59 (d, *J* 4.5, CH_2), 46.82 (d, *J* 5.5, CH_2), 49.62 ($\text{Me}_2\text{CHCH}_2\text{CH}$), 128.18, 128.37, 131.57, 131.69, 131.81, 131.94, 132.02, 132.13, 132.26, 133.89, 134.04 (ArC); δ_{P} (161.7 MHz, CDCl_3) 21.02; *m/z* (Cl) 358 ($\text{M}+29$, 22%), 330 ($\text{M}+1$, 100), 300 ($\text{M}-\text{CH}_3\text{CH}_2$, 38), 286 ($\text{M}-\text{Me}_2\text{CH}$, 87), 272 ($\text{M}-\text{Me}_2\text{CHCH}_2$, 73) and 201 (Ph_2PO , 68); Found: 320.1972. $\text{C}_{20}\text{H}_{29}\text{NPO}$ requires 330.1987.

(S)-1-Phenyl-2-(diphenylphosphinamido)-4-methylpentane (25). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), CuBr.SEt₂ (0.001g, 0.006 mmol) and isopropyl magnesium bromide (5 equivalents), prepared from Mg (0.04g, 1.5 mmol) and 2-bromopropane (0.14 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (25) (0.099g, 88%) as a white solid. *R*_f 0.5 (ethyl acetate); m.p. 156 °C; (Found : C, 75.39; H, 7.69; N, 3.32. C₂₄H₂₈NPO.0.2H₂O requires C, 75.44; H 7.76; N 3.67%). $[\alpha]_D^{19.5}$ -14.70 (c 1.7 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3300 (NH), 2860, 2840 (CH), 1510, 1420, 1180, 1140 (P=O); δ_{H} (270 MHz, CDCl₃) 0.74 and 0.81 (6H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 1.26-1.47 (2H, m, Me₂CHCH₂), 1.80-1.90 (1H, m, Me₂CH), 2.61 (1H, dd, *J* 5.0, 11.0, NH), 2.86 (1H, dd, *J* 5.5, 13.5, CH of CH₂Ph), 2.92 (1H, dd, *J* 6.0, 13.5, CH of CH₂Ph), 3.23-3.32 (1H, m, Me₂CHCH₂CH), 7.14-7.52 and 7.66-7.72 and 7.83-7.91 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl₃) 22.38 and 22.66 (Me₂CH), 24.62 (Me₂CH), 43.35 (d, *J* 4.5, Me₂CHCH₂), 46.28 (d, *J* 5.5, PhCH₂), 51.02 (Me₂CHCH₂CH), 126.27, 128.24, 130.03, 131.54, 131.57, 131.65, 132.00, 132.16, 132.32, 138.15 (ArC); δ_{P} (161.7 MHz, CDCl₃) 21.14; m / z (Cl) 406 (M+29, 16%), 378 (M+1, 82), 286 (M-PhCH₂, 100) and 201 (39); Found: 378.1984. C₂₄H₂₉NPO requires 378.1987. The opposite enantiomer, (30), was also prepared (0.10g, 76%) by reaction of aziridine (6) (0.1g, 0.33 mmol), CuBr.SEt₂ (0.001g, 0.007 mmol) and phenyl magnesium bromide (5 equivalents), prepared from Mg (0.05g, 1.7 mmol) and bromobenzene (0.18 ml, 1.7 mmol), in THF for 4 hours. The analytical data for this compound was identical to that recorded above but for one exception : $[\alpha]_D^{19.5}$ 14.70 (c 1.7 in CH₂Cl₂).

2-Methyl-4-(diphenylphosphinamido)-6-methylheptane (26). By following the general procedure described above aziridine (6) (0.1g, 0.33 mmol), CuBr.SEt₂ (0.001g, 0.007 mmol) and isopropyl magnesium bromide (5 equivalents), prepared from Mg (0.05g, 1.7 mmol) and 2-bromopropane (0.16 ml, 1.7 mmol), were reacted in THF for 4 hours to leave (26) (0.10g, 84%) as a white solid. *R*_f 0.49 (ethyl acetate); m.p. 149-149.3 °C; (Found : C, 73.45; H, 8.86; N, 4.05; P, 8.49. C₂₁H₃₀NPO requires C, 73.44; H, 8.80; N, 4.08; P, 9.02%). $[\alpha]_D^{19.5}$ 0 (c 3 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3300 (NH), 2960, 2940 (CH), 1540, 1445, 1420, 1385, 1205, 1120 (P=O), 740; δ_{H} (270 MHz, CDCl₃) 0.76 and 0.77 (12H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 1.26-1.46 (4H, m, Me₂CHCH₂), 1.73-1.83 (2H, m, Me₂CH), 2.51 (1H, dd, *J* 5.0, 10.5, NH), 2.96-3.08 (1H, m, Me₂CHCH₂CH), 7.27-7.52 and 7.89-7.97 (10H, m, ArH); δ_{C} (67.5 MHz, CDCl₃) 22.59 and 22.66 (Me₂CH), 24.63 (Me₂CH), 47.64 (d, *J* 5.5, CH₂), 48.40 (Me₂CHCH₂CH), 128.24, 128.42, 131.62, 132.05, 132.21, 132.34 (ArC); δ_{P} (161.7 MHz, CDCl₃) 20.61; m / z (Cl) 372 (M+29, 13%), 344 (M+1, 64), 286 (M-Me₂CHCH₂, 100) and 201 (Ph₂PO).

(R)-1-Phenyl-2-(diphenylphosphinamido)-heptane (27). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), CuBr.SEt₂ (0.001g, 0.006 mmol) and butyl magnesium bromide (5 equivalents), prepared from Mg (0.04g, 1.5 mmol) and 1-bromobutane (0.16 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (27) (0.10g, 89%) as a white solid. *R*_f 0.50 (ethyl acetate); m.p. 109 °C; (Found : C, 76.50; H, 7.73; N, 3.25. C₂₅H₃₀NPO requires C, 76.70; H, 7.72; N, 3.58%). $[\alpha]_D^{19.5}$ -7 (c 1 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 2880 (CH and NH), 1430, 1120 (P=O); δ_{H} (270 MHz, CDCl₃) 0.85 (3H, t, *J* 7.0, MeCH₂), 1.08-1.57 (8H, m, MeCH₂CH₂CH₂CH₂CH₂), 2.67 (1H, dd, *J* 5.5, 11.0, NH), 2.86 (1H, dd, *J* 6.0, 13.5, CH of PhCH₂), 2.91 (1H, dd, *J* 5.5, 13.5, CH of CH₂Ph), 3.20-3.29 (1H, m, PhCH₂CH), 7.03-7.49 and 7.51-7.70 and 7.82-7.90 (15H, m, ArH); δ_{C} (67.5 MHz, CDCl₃) 14.01 (CH₃), 22.55 (MeCH₂), 25.46 (CH₂), 31.63 (CH₂), 36.62 (d, *J* 4.5, CH₂CH), 42.97 (d, *J* 5.5, PhCH₂), 53.08 (CH), 126.30, 128.27, 128.45, 129.94, 131.54,

131.67, 132.08, 132.23, 138.40 (ArC); δ P (161.7 MHz, CDCl₃) 21.34; m / z (Cl) 420 (M+29, 19%), 392 (M+1, 83), 300 (M-PhCH₂, 100) and 201 (51); Found: 392.2133. C₂₅H₃₁NPO requires 392.2143.

(R)-2-Methyl-4-(diphenylphosphinamido)nonane (28). By following the general procedure described above aziridine (6) (0.1g, 0.33 mmol), CuBr.SEt₂ (0.0011g, 0.007 mmol) and butyl magnesium bromide (5 equivalents), prepared from Mg (0.05g, 1.7 mmol) and 1-bromobutane (0.18 ml, 1.7 mmol), were reacted in THF for 4 hours to leave (28) (0.10g, 76%) as a white solid. R_f 0.35 (ethyl acetate); m.p. 88–89 °C; (Found : C, 73.91; H, 9.32; N, 3.72; P, 9.07. C₂₂H₃₂NPO requires C, 73.92; H, 9.02; N, 3.92; P, 8.66%). $[\alpha]_D^{19.5}$ 24 (c 2 CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3500, 3050 (NH), 2980 (CH), 1525, 1490, 1440, 1269, 1180 (P=O), 960, 712; δ H (270 MHz, CDCl₃) 0.77 and 0.80 (6H, 2 x d, J 6.5 and 6.5, Me₂CH), 0.86 (3H, t, J 7.0, MeCH₂), 1.17–1.54 and 1.71–1.79 (11H, m, Me₂CHCH₂CHCH₂CH₂CH₂CH₂CH₃), 2.59 (1H, dd, J 5.5, 10.5, NH), 3.00–3.09 (1H, m, Me₂CHCH₂CH), 7.40–7.52 and 7.87–8.03 (10H, m, ArH); δ C (67.5 MHz, CDCl₃) 14.05 (MeCH₂), 22.59 and 22.74 (Me₂CH), 24.70 (Me₂CH), 24.78, 31.78, 37.35 (d, J 4.5), 46.78, 46.86 (all CH₂), 49.82 (Me₂CHCH₂CH), 128.26, 128.43, 131.64, 132.10, 132.18, 132.24, 132.30 (ArC); δ P (161.7 MHz, CDCl₃) 21.01; m / z (Cl) 386 (M+29, 19%), 358 (M+1, 97%), 300 (M-Me₂CHCH₂, 78), 286 (M-MeCH₂CH₂CH₂CH₂, 100), 201 (Ph₂PO, 59) and 85 (58); Found: 358.2292. C₂₂H₃₃NPO requires 358.2300.

1-Phenyl-2-(diphenylphosphinamido)-3-phenylpropane (29). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), CuBr.SEt₂ (0.001g, 0.006 mmol) and phenyl magnesium bromide (5 equivalents), prepared from Mg (0.04g, 1.5 mmol) and bromobenzene (0.16 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (29) (0.11g, 93%) as a white solid. R_f 0.44 (ethyl acetate); m.p. 123–124 °C; (Found : C, 78.31; H, 6.59; N, 3.42. C₂₇H₂₆NPO.0.1H₂O requires C, 78.46; H, 6.39; N, 3.39%). $[\alpha]_D^{19.5}$ 0 (c 3 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3362 (NH and CH), 1556, 1438, 1131 (P=O), 908, 651; δ H (270 MHz, CDCl₃) 2.69 (1H, dd, J 4.5, 11.0, NH), 2.79 (2H, dd, J 6.5, 13.5, CH of CH₂Ph), 2.93 (2H, dd, J 5.5, 13.5, CH of CH₂Ph), 3.43–3.53 (1H, m, PhCH₂CH), 7.15–7.55 (20H, m, ArH); δ C (67.5 MHz, CDCl₃) 43.63 (d, J 4.5, CH₂Ph), 55.35 (PhCH₂CH), 127.03, 127.96, 128.63, 128.88, 129.07, 130.62, 132.15, 132.68, 132.84, 139.00 (ArC); δ P (161.7 MHz, CDCl₃) 21.53; m / z (Cl) 440 (M+29, 30%), 413 (M+2, 50), 412 (M+1, 92), 334 (M-Ph, 26), 320 (M-PhCH₂, 100), 201 (Ph₂PO, 68) and 91 (37); Found: 412.1830. C₂₇H₂₇NPO requires 412.1810.

(R)-1-Cyclopentyl-2-(diphenylphosphinamido)-3-phenyl propane (31). By following the general procedure described above aziridine (5) (0.1g, 0.3 mmol), CuBr.SEt₂ (0.001g, 0.006 mmol) and cyclopentyl magnesium bromide (5 equivalents), prepared from Mg (0.04g, 1.5 mmol) and cyclopentyl bromide (0.16 ml, 1.5 mmol), were reacted in THF for 4 hours to leave (31) (0.06g, 53%) as a white solid. R_f 0.34 (ethyl acetate); m.p. 118.9–119.7 °C; (Found : C, 77.35; H, 7.43; N, 3.58. C₂₆H₃₀NPO requires C, 77.39; H, 7.49; N, 3.47%). $[\alpha]_D^{19.5}$ 12.6 (c 2.7 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 2960 (CH and NH), 1540, 1420, 1210, 1130 (P=O), 712; δ H (270 MHz, CDCl₃) 0.74–1.04 and 1.26–1.75 and 1.97–2.08 (11H, m, cyclopentyl and PhCH₂CHCH₂), 2.64 (1H, dd, J 5.5, 11.0, NH), 2.80 (1H, dd, J 6.0, 13.5, CH of CH₂Ph), 3.23 (1H, dd, J 13.5, 6.0, CH of CH₂Ph), 3.29–3.31 (1H, m, PhCH₂CH), 7.08–7.52 and 7.62–7.73 and 7.83–7.91 (15H, m, ArH); δ C (67.5 MHz, CDCl₃) 24.98 and 25.03 (CH₂ of cyclopentyl), 32.64 (d, J 5.5, PhCH₂CHCH₂), 36.68 (CH of

cyclopentyl), 43.35 (d, J 5.5, PhCH₂), 52.40 (PhCH₂CH), 126.29, 128.26, 128.45, 130.03, 131.54, 131.57, 131.69, 132.02, 132.18, 132.32, 138.32 (ArC); δ P (161.7 MHz, CDCl₃) 21.27; m/z (Cl) 432 (M+29, 5%), 404 (M+1, 27%), 312 (M-PhCH₂, 100%) and 201 (42); Found: 404.2130. C₂₆H₃₁NPO requires 404.2140.

(S)-1-Cyclopentyl-2-(diphenylphosphinamido)-4-methylpentane (32). By following the general procedure described above aziridine (6) (0.1g, 0.33 mmol), CuBr.SEt₂ (0.0011g, 0.007 mmol) and cyclopentyl magnesium bromide (5 equivalents), prepared from Mg (0.05g, 1.7 mmol) and cyclopentyl bromide (0.18 ml, 1.7 mmol), were reacted in THF for 4 hours to leave (32) (0.10g, 84%) as a white solid. R_f 0.5 (ethyl acetate); m.p. 133-134.5 °C; (Found: C, 73.46; H, 8.73; N, 3.48. C₂₃H₃₂NPO.0.35H₂O requires C, 73.51; H, 8.67; N, 3.73%). $[\alpha]_D^{19.5}$ 4.5 (c 4.2 in CH₂Cl₂); ν_{max} (CCl₄) / cm⁻¹ 3379 (NH), 3060 (CH), 1438, 1212, 1122 (P=O), 746; δ H (270 MHz, CDCl₃) 0.76 and 0.78 (6H, 2 x d, J 6.5 and 6.5, Me₂CH), 0.82-1.97 (14H, m, Me₂CHCH₂CHCH₂cyclopentyl), 2.58 (1H, dd, J 5.0, 10.5, NH), 2.93-3.06 (1H, m, CH), 7.28-7.52 and 7.88-7.97 (10H, m, ArH); δ C (67.5 MHz, CDCl₃) 22.52 and 22.66 (Me₂CH), 24.62 (Me₂CH), 24.97, 32.67, 32.81 (Cyclopentyl CH₂), 36.54 (CH), 44.49 (d, J 4.5, CH₂), 47.42 (d, J 5.5, CH₂), 49.51 (Me₂CHCH₂CH), 128.18, 128.37, 131.54, 131.97, 132.05, 132.13, 132.257, 133.88, 133.97 (ArC); δ P (161.7 MHz, CDCl₃) 20.64; m/z (Cl) 398 (M+29, 18%), 370 (M+1, 91), 312 (M-Me₂CHCH₂, 84), 286 (M-CH₂cyclopentyl, 100) and 201 (POPh₂, 76); Found: 370.2293. C₂₃H₃₃NPO requires 370.2300.

(R)-2-Methyl-3-(diphenylphosphinamido)-6-methylheptane (33). By following the general procedure described before for the reactions of aziridines with copper catalysed Grignard reagents, aziridine (6I) (1.0g, 3.5 mmol) was reacted with 2-methyl-propane magnesium bromide (17.5 mmol, 5 equivalents) and CuBr.SMe₂ (0.014g, 0.07 mmol) in THF for 4 hours to yield (33) (0.51g, 74%) as a pale yellow solid. R_f 0.5 (ethyl acetate); m.p. 147-148 °C; (Found: C, 73.43; H, 8.82; N, 4.02; P, 8.77. C₂₁H₃₀NPO requires C, 73.44; H, 8.80; N, 4.08; P, 9.02%). $[\alpha]_D^{20}$ -31 (c 10 in CH₂Cl₂); ν_{max} (neat liquid) / cm⁻¹ 3249 (NH), 2965 (CH), 1447, 1191, 1127 (P=O); δ H (400 MHz, CDCl₃) 0.83-0.87 (9H, m, Me₂CH and Me of Me₂CH), 0.92 (3H, d, J 7.0, Me of Me₂CH), 1.02-1.20 and 1.21-1.35 and 1.40-1.55 and 1.80-1.92 (6H, m, Me₂CHCH₂CH₂ and Me₂CH), 2.62-2.71 (1H, m, NH), 1.80-1.96 (1H, m, CH), 7.38-7.55 and 7.82-8.00 (10H, m, ArH); δ C (100 MHz, CDCl₃) 17.73, 18.50, 22.50, 22.59, 27.84, 31.14 (d, J 4.9, CH₂), 32.02 (d, J 5.0, CH₂), 35.05, 56.73 (CH), 128.15, 128.27, 131.46, 132.05, 132.15, 132.25, 132.72, 134.00 (ArC); m/z (Cl) 344 (M+1, 99%), 300 (22), 266 (20), 79 (96), 57 (100). Found 344.2151. C₂₁H₃₁NOP requires 344.2143.

(R)-2-Methyl-3-(diphenylphosphinamido)-5-methylhexane (34). By following the general procedure described before for the reactions of aziridines with copper catalysed Grignard reagents, aziridine (6I) (0.60g, 2.1 mmol) was reacted with iso-propyl magnesium bromide (10 mmol, 5 equivalents) and CuBr.SMe₂ (0.008g, 0.04 mmol) in THF for 4 hours to yield (34) (0.37g, 56%) as a pale yellow solid. R_f 0.4 (ethyl acetate); (Found: C, 72.49; H, 8.39; N, 4.15. C₂₀H₂₈NPO requires C, 72.92; H, 8.57; N, 4.25%). $[\alpha]_D^{20}$ 4.9 (c 7 in CH₂Cl₂); ν_{max} (neat liquid) / cm⁻¹ 3251 (NH), 2960 (CH), 1447, 1191, 1127 (P=O); δ H (400 MHz, CDCl₃) 0.75 (3H, d, J 6.5, MeCH), 0.81 (3H, d, J 7.0, MeCH), 0.83 (3H, d, J 7.0, MeCH), 0.92 (3H, d, J 7.0, MeCH), 1.21-1.38 (2H, m, Me₂CHCH₂), 1.72-1.85 (1H, m, Me₂CH), 1.88-1.97 (1H, m, Me₂CH), 2.65-2.75 (1H, m, NH), 2.92-3.05 (1H, m, CH), 7.40-7.48 and 7.89-7.94 (10H, m, ArH); δ C (100 MHz, CDCl₃) 17.52, 17.82, 22.18, 23.26, 24.50, 32.44, 42.63, 54.53, 128.26, 128.39, 128.49, 131.64, 131.77, 132.16, 132.28, 132.36.

(R)-2-Methyl-4-(diphenylphosphinamido)-7-methyloctane (35). By following the general procedure described before for the reactions of aziridines with copper catalysed Grignard reagents, aziridine (6) (0.90g, 3.0 mmol) was reacted with 2-methylpropyl magnesium bromide (15 mmol, 5 equivalents) and CuBr.SMe₂ (0.012g, 0.06 mmol) in THF for 4 hours to yield (35) (0.60g, 60%) as a pale yellow solid. *R*_f 0.4 [ethyl acetate-hexane (1:1)]; m. p. 115–115.6 °C; (Found : C, 73.59; H, 8.98; N, 3.84. C₂₂H₃₂NPO requires C, 73.92; H, 9.02; N, 3.92%). [α]_D²⁰ -17.3 (c 6 in CH₂Cl₂); ν_{max} (neat liquid) / cm⁻¹ 3189 (NH), 2934 (CH), 1436, 1187, 1114 (P=O); δ_H (400 MHz, CDCl₃) 0.78 (3H, d, *J* 6.5, MeCH), 0.81 (3H, d, *J* 6.5, MeCH), 0.83 (3H, d, *J* 7.0, MeCH), 0.85 (3H, d, *J* 7.0, MeCH), 1.18–1.55 (7H, m, Me₂CHCH₂CH₂ and Me₂CHCH₂), 1.75–1.82 (1H, m, Me₂CH), 2.65–2.79 (1H, m, NH), 3.01–3.17 (1H, m, CH), 7.39–7.46 and 7.89–7.94 (10H, m, ArH); δ_C (100 MHz, CDCl₃) 22.58, 22.64, 22.88, 24.70, 28.00, 34.22, 35.16, 46.71 (d, *J* 5.5, CH₂), 49.95 (CH), 128.26, 128.39, 131.58, 132.17, 132.23 (ArC); m / z (Cl) 358 (M+1, 85%), 156 (21), 79 (87), 57 (100). Found 358.2286. C₂₂H₃₃NOP requires 358.2230.

General methods for deprotection

Method A: To give free amines. To the N-Dpp compound (typically 0.1 mmol) in CH₂Cl₂ (2 ml), under N₂, was added MeOH (2 ml) followed by BF₃OEt₂ (excess). The solution was stirred overnight, after which time H₂O (2 ml) was added. The aqueous layer was then extracted with CH₂Cl₂ (3 x 5ml), basified (NaHCO₃) and then extracted with further portions of CH₂Cl₂ (3 x 5ml). These organic layers were then combined, washed with brine (5 ml), dried (Na₂SO₄), filtered and the solvent removed *in vacuo* to yield the free amines in the yields stated.

Method B: To give amine hydrofluoride salts. To the N-Dpp compound (typically 0.1 mmol) in CH₂Cl₂ (2 ml), under N₂, was added MeOH (2 ml) followed by BF₃OEt₂ (excess). The solution was then stirred overnight, after which time H₂O (2 ml) was added. The aqueous layer was freeze-dried to produce the hydrofluoride salts of the deprotected compounds.

(R)-3-Amino-4-phenylbutane monohydrofluoride (36). By following method B, the N-Dpp compound (9) (0.07g, 0.2 mmol) was reacted with BF₃OEt₂ (0.2 ml, excess) to yield amine hydrofluoride (36) (0.029g, 87%) as a white solid. [α]_D²³ -5 (c 0.4 in MeOH); δ_H (270 MHz, D₂O) 0.98 (3H, t, *J* 7.5, MeCH₂), 1.60–1.73 (2H, m, MeCH₂), 2.82 (1H, dd, *J* 8.0, 14.0, CH of CH₂Ph), 3.03 (1H, dd, *J* 6.0, 14.0, CH of CH₂Ph), 3.43–3.48 (1H, m, PhCH₂CH), 7.28–7.43 (5H, m, ArH); δ_C (67.5 MHz, D₂O) 8.47 (CH₃CH₂), 24.68 (MeCH₂), 37.44 (CH₂Ph), 54.21 (CH), 127.15, 128.80, 129.15, 135.73 (ArC); m / z (Cl) 172 (M+3, 100), 169 (M, 21) and 102 (89); Found 169.1264. C₁₀H₁₆NF requires 169.1267.

(R)-3-Amino-5-methylhexane monohydrofluoride (37). By following method B, the N-Dpp compound (10) (0.08g, 0.25 mmol) was reacted with BF₃OEt₂ (0.2 ml, excess) to yield amine hydrofluoride (37) (0.027g, 80%) as a white solid. (Found : C, 62.41; H, 13.19; N, 10.26. C₇H₁₈NF requires C, 62.22; H, 13.33; N, 10.37%). [α]_D²³ -6 (c 0.3 in MeOH); δ_H (270 MHz, D₂O) 0.80 (6H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 0.84 (3H, t, *J* 7.5, MeCH₂), 1.27–1.75 (5H, m, Me₂CHCH₂CHCH₂Me), 3.11–3.21 (1H, m, CH); δ_C (67.5 MHz, D₂O) 8.35 (MeCH₂), 21.27 and 21.62 (Me₂CH), 23.75 (Me₂CH), 25.27 (CH₂), 40.70 (CH₂), 51.34 (CH); m / z (Cl) 116 (M-19, 100) and 114 (31); Found 116.1437. C₇H₁₈N requires 116.1439.

(S)-1-Iodo-2-amino-3-phenylpropane monohydrofluoride (38). By following method B, the N-Dpp compound (14) (0.094g, 0.20 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (38) (0.047g, 84%) as yellow oil. $[\alpha]_D^{23}$ 22 (c 0.5 in MeOH); δ_H (270 MHz, D_2O) 2.98 (2H, d, J 7.0, PhCH_2), 3.25 (1H, dd, J 5.0, 11.5, CH of CH_2I), 3.40-3.72 (2H, m, CH of CH_2I and CH), 7.27-7.50 (5H, m, ArH); δ_C (67.5 MHz, D_2O) 38.38 (CH_2), 52.29 (CH), 52.33 (CH), 127.78, 129.18, 129.43, 134.83 (ArC); m/z (Cl) 265 (M-2, 30%), 264 (M-1, 27), 262 (M-F, 2), 245 (M- NH_3F , 21), 172 (M-95, 100), 171 (75), 136 (39), 135 (20), 118 (24), 117 (94), 92 (21) and 91 (84); Found 262.0096. $\text{C}_9\text{H}_{13}\text{NI}$ requires 262.0093.

(S)-1-Iodo-2-amino-4-methylpentane monohydrofluoride (39). By following method B, the N-Dpp compound (15) (0.07g, 0.16 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (39) (0.032g, 81%) as a clear oil. $[\alpha]_D^{23}$ -5 (c 0.4 in MeOH); δ_H (270 MHz, D_2O) 0.90 and 0.92 (6H, 2 x d, J 5.5 and 5.5, Me_2CH), 1.25-1.68 (3H, m, Me_2CHCH_2), 3.26-3.27 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$), 3.43 (1H, dd, J 5.0, 11.5, CH of CH_2I), 3.54 (1H, dd, J 11.5, 3.5, CH of CH_2I); m/z (Cl) 228 (M-F, 8%), 198 (65) and (185 (100). Found 228.0241. $\text{C}_6\text{H}_{15}\text{NI}$ requires 228.0248.

(S)-1-Phenyl-2-amino-3-thiophenolpropane monohydrofluoride (40). By following method B, the N-Dpp compound (16) (0.10g, 0.20 mmol) was reacted with BF_3OEt_2 (3 drops) to yield the amine hydrofluoride (40) (0.045g, 85%) as a hygroscopic white solid. $[\alpha]_D^{23}$ -7.2 (c 0.4 in MeOH); δ_H (270 MHz, D_2O) 3.03-3.15 (3H, m, PhCH_2 and CH of CH_2SPh), 3.34 (1H, dd, J 4.0, 15.0, CH of CH_2SPh), 3.49-3.58 (1H, m, CH), 7.20-7.69 (10H, m, ArH); δ_C (67.5 MHz, D_2O) 35.24 (PhCH_2), 37.43 (CHNH), 52.10 (CH_2SPh), 124.10, 124.55, 127.56, 129.05, 129.15, 129.31, 129.50, 130.39 (ArC); m/z (FAB) 244 (M-19, 82%), 233 (86) and 123 (100).

(S)-1-Thiophenol-2-amino-4-methylpentane (41). By following method A, the N-Dpp compound (17) (0.09g, 0.22 mmol) was reacted with BF_3OEt_2 (3 drops) to yield amine (41) (0.035g, 76%) as a pale yellow oil. (Found: C, 68.54; H, 8.80; N, 6.54. $\text{C}_{12}\text{H}_{19}\text{NS}$ requires C, 68.90; H, 9.09; N, 6.70%). $[\alpha]_D^{23}$ 10.5 (c 3 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 3301 (NH), 3073 (NH), 2956, 692; δ_H (270 MHz, CDCl_3) 0.87 and 0.89 (6H, 2 x d, J 6.5 and 6.5, Me_2CHCH_2), 1.23-1.33 (2H, m, Me_2CHCH_2), 1.43-1.65 (2H, s, br, NH_2), 1.67-1.80 (1H, m, Me_2CHCH_2), 2.72 (1H, dd, J 8.5, 13.0, CH of CH_2SPh), 2.96-3.09 (1H, m, CH), 3.10 (1H, dd, J 3.5, 13.0, CH of CH_2SPh), 7.57-7.38 (5H, m, ArH); δ_C (67.5 MHz, CDCl_3) 22.05 and 23.25 (Me_2CH), 24.97 (Me_2CH), 43.14 (Me_2CHCH_2), 46.49 (CH), 48.13 (CH_2SPh), 126.10, 128.89, 129.53, 136.30 (ArC).

(S)-1-Phenyl-2-amino-3-selenophenylpropane monohydrofluoride (42). By following method B, the N-Dpp compound (18) (0.10g, 0.20 mmol) was reacted with BF_3OEt_2 (0.20 ml, excess) to yield amine hydrofluoride (42) (0.057g, 92%) as a colourless oil. $[\alpha]_D^{23}$ -7.1 (c 0.3 in MeOH); δ_H (270 MHz, D_2O) 3.00-3.16 (3H, m, PhCH_2CH and CH of CH_2SePh), 3.30 (1H, dd, J 4.5, 14.0, CH of CH_2SePh), 3.52-3.70 (1H, m, CH), 7.20-7.65 (10H, m, ArH); δ_C (67.5 MHz, D_2O) 28.64, 38.00 (both CH_2), 52.80 (CH), 127.53, 128.07, 129.05, 129.28, 129.66, 131.47, 133.15, 135.18 (ArC); m/z (FAB) 233 (M-Ph, 100%), 133 (27).

(S)-1-Selenophenyl-2-amino-4-methylpentane monohydrofluoride (43). By following method B, the N-Dpp compound (19) (0.09g, 0.19 mmol) was reacted with BF_3OEt_2 (0.20 ml, excess) to yield amine hydrofluoride (43) (0.046g, 88%) as a pale yellow oil. $[\alpha]_D^{23}$ 11 (c 0.4 in MeOH); δ_H (270 MHz, D_2O) 0.70 and 0.90

(6H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 1.44-1.84 (3H, m, Me₂CHCH₂), 2.71-3.15 (1H, m, Me₂CHCH₂CH), 3.42-3.76 (2H, m, PhSeCH₂), 7.32-7.74 (5H, m, ArH); m/z (Cl) 261 (25), 260 (24), 259 (39), 258 (M-F, 28), 257 (24), 256 (16), 241 (98), 239 (50), 173 (100), 172 (60), 171 (58), 170 (43), 169 (43), 168 (18) and 102 (52); Found 258.0743. C₁₂H₂₀NSe requires 258.0761.

(S)-1-Cyano-2-amino-3-phenylpropane (44). By following method A, the Dpp protected compound (21) (0.04g, 0.11 mmol) was reacted with BF₃OEt₂ (3 drops) to yield amine (44) (0.016g, 89%) as a clear oil. $[\alpha]_D^{23}$ -9.4 (c 1 in CH₂Cl₂); δ_H (270 MHz, CDCl₃) 2.37 (1H, dd, *J* 6.5, 16.5, CH of CH₂Ph), 2.49 (1H, dd, *J* 16.5, 5.0, CH of CH₂Ph), 2.75 (1H, dd, *J* 7.5, 13.5, CH of CH₂CN), 2.85 (1H, dd, *J* 6.0, 13.5, CH of CH₂CN), 3.33-3.43 (1H, m, PhCH₂CH), 7.17-7.37 (5H, m, ArH); m/z (Cl) 120 (M-CH₂CN, 84%), 91 (75), 84 (100) and 51 (88); Found 120.0811. C₈H₁₀N requires 120.0813.

(S)-2-Methyl-4-amino-5-cyanopentane mono hydrofluoride (45). By following method B, the N-Dpp compound (22) (0.07g, 0.16 mmol) was reacted with BF₃OEt₂ (3 drops) to yield amine hydrofluoride (45) (0.021g, 89%) as a hygroscopic white solid. $[\alpha]_D^{23}$ -5 (c 0.5 in MeOH); δ_H (270 MHz, D₂O) 0.96 (3H, d, *J* 5.5, MeCH), 0.98 (3H, d, *J* 5.0, MeCH), 1.66-1.80 (3H, m, Me₂CHCH₂), 3.01 (2H, d, *J* 5.0, CH₂CN), 3.68-3.80 (1H, m, CH); δ_C (67.5 MHz, D₂O) 21.11, 21.33, 23.68 (Me₂CH), 40.54, 46.10 (CH₂), 116.99 (CN); m/z (Cl) 128 (9%), 127 (M-F, 5) and 87 (100).

(R)-1-Phenyl-2-aminopentane monohydrofluoride (46). By following method B, the N-Dpp compound (23) (0.09g, 0.19 mmol) was reacted with BF₃OEt₂ (0.1 ml, excess) to yield amine hydrofluoride (46) (0.025g, 73%) as a white solid. $[\alpha]_D^{23}$ 11 (c 0.2 in MeOH); δ_H (270 MHz, D₂O) 0.80 (3H, t, *J* 7.5, MeCH₂), 1.25-1.40 (2H, m, CH₂), 1.43-1.57 (2H, m, CH₂), 2.74 (1H, dd, *J* 8.0, 14.5, CH of CH₂Ph), 2.94 (1H, dd, *J* 6.5, 14.5, CH of CH₂Ph), 3.38-3.68 (1H, m, CH), 7.18-7.48 (5H, m, ArH); δ_C (67.5 MHz, D₂O) 12.83 (Me), 17.84 (CH₂), 33.84 (CH₂), 38.07 (CH₂), 52.89 (CH), 127.37, 128.99, 129.40, 135.98 (ArC); m/z (Cl) 164 (M-19, 21%), 147 (35), 119 (19), 105 (12), 91 (86) and 72 (100). Found 164.1437. C₁₁H₁₈N requires 164.1439.

(R)-2-Methyl-4-aminoheptane monohydrofluoride (47). By following method B, the N-Dpp compound (24) (0.08g, 0.24 mmol) was reacted with BF₃OEt₂ (0.2 ml, excess) to yield amine hydrofluoride (47) (0.027g, 76%) as a white solid. $[\alpha]_D^{23}$ -5.5 (c 1.3 in MeOH); δ_H (270 MHz, D₂O) 0.98 (6H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 0.99 (3H, t, *J* 5.5, MeCH₂), 1.25-1.70 (7H, m, Me₂CHCH₂CH₂CH₂CH₂CH₃), 3.30-3.41 (1H, m, Me₂CHCH₂CH); δ_C (67.5 MHz, D₂O) 12.89 (MeCH₂), 17.56 (MeCH₂), 21.37, 21.56 (Me₂CH), 23.72 (Me₂CH), 34.32 (CH₂), 41.15 (CH₂), 49.84 (Me₂CHCH₂CH); m/z (Cl) 130 (M-19, 10%), 86 (95) and 72 (100). Found 130.1589. C₈H₂₀N requires 130.1596.

(R)-2-Methyl-4-amino-5-phenylpentane monohydrofluoride (48). By following method B, the N-Dpp compound (25) (0.10g, 0.26 mmol) was reacted with BF₃OEt₂ (0.1 ml, excess) to yield amine hydrofluoride (48) (0.042g, 82%) as a white solid. $[\alpha]_D^{23}$ 7.2 (c 0.5 in MeOH); δ_H (270 MHz, D₂O) 0.80 and 0.84 (6H, 2 x d, *J* 6.4 and 6.4, Me₂CH), 1.41-1.46 (2H, m, Me₂CHCH₂), 1.60-1.70 (1H, m, Me₂CH), 2.78 (1H, dd, *J* 7.5, 14.0, CH of CH₂Ph), 2.98 (1H, dd, *J* 6.0, 14.2, CH of CH₂Ph), 3.51-3.72 (1H, m, PhCH₂CH), 7.22-7.37 (5H,

m, ArH; δ_{C} (67.5 MHz, D_2O) 21.14 and 21.56 (Me_2CH), 23.72 (Me_2CH), 38.45 (Me_2CHCH_2), 40.96 (PhCH_2), 51.27 (CH), 127.37, 128.96, 129.43, 135.82 (ArC); *m/z* (Cl) 178 (M-19, 37%), 176 (26), 161 (M- NH_3^+ , 20), 120 (100), 119 (72) and 105 (81); Found 178.1598. $\text{C}_{12}\text{H}_{20}\text{N}$ requires 178.1596. The opposite enantiomer, (**53**) was produced in 89% from *N*-Dpp compound (**30**) following an identical procedure.

2-Methyl-4-amino-6-methylheptane monohydrofluoride (49). By following method B, the *N*-Dpp compound (**26**) (0.086g, 0.25 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (**49**) (0.031g, 77%) as a white solid. (Found : C, 66.42; H, 13.61; N, 8.23. $\text{C}_9\text{H}_{22}\text{NF}$ requires C, 66.26; H, 13.50; N 8.59%). $[\alpha]_D^{23} 0$ (*c* 2 in MeOH); δ_{H} (270 MHz, D_2O) 0.81 and 0.82 (12H, 2 x d, *J* 6.5 and 6.5, Me_2CH), 1.28-1.41 (4H, m, Me_2CHCH_2), 1.44-1.65 (2H, m, Me_2CH), 3.21-3.28 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$); δ_{C} (67.5 MHz, D_2O) 21.18 and 21.68 (Me_2CH), 23.68 (Me_2CH), 41.72 (Me_2CHCH_2), 48.38 ($\text{Me}_2\text{CHCH}_2\text{CH}$); *m/z* (Cl) 144 (M-F, 66%), 143 (36), 142 (100) and 128 (37); Found 144.1748. $\text{C}_9\text{H}_{22}\text{N}$ requires 144.1752.

(R)-1-Phenyl-2-aminoheptane monohydrofluoride (50). By following method B, the *N*-Dpp compound (**27**) (0.10g, 0.27 mmol) was reacted with BF_3OEt_2 (0.1 ml, excess) to yield amine hydrofluoride (**50**) (0.045g, 79%) as a white solid. $[\alpha]_D^{23} 11$ (*c* 0.4 in MeOH); δ_{H} (270 MHz, D_2O) 0.77 (3H, t, *J* 7.5, MeCH_2), 1.04-1.55 (8H, m, $\text{MeCH}_2\text{CH}_2\text{CH}_2\text{CH}_2$), 2.78 (1H, dd, *J* 8.0, 14.5, CH of CH_2Ph), 2.97 (1H, dd, *J* 14.5, 6.0, CH of CH_2Ph), 3.42-3.47 (1H, m, PhCH_2CH), 7.11-7.33 (5H, m, ArH); δ_{C} (67.5 MHz, D_2O) 13.11 (MeCH_2), 21.59, 23.94, 30.54, 31.62 (CH_2), 38.00 (PhCH_2), 53.08 (CH), 127.34, 128.96, 129.37, 135.98 (ArC); *m/z* (Cl) 192 (M-F, 9%), 175 (M- NH_3F , 7), 122 (13), 121 (17), 119 (25), 105 (22) and 102 (100); Found 192.1755. $\text{C}_{13}\text{H}_{22}\text{N}$ requires 192.1752.

(R)-2-Methyl-4-aminononane monohydrofluoride (51). By following method B, the *N*-Dpp compound (**28**) (0.08g, 0.22 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (**51**) (0.031g, 80%) as a hygroscopic solid. $[\alpha]_D^{23} 3.9$ (*c* 0.2 in MeOH); δ_{H} (270 MHz, D_2O) 1.40 (6H, d, *J* 6.5 and 6.5, Me_2CH), 1.55 (3H, t, *J* 5.5, MeCH_2), 1.20-1.80 (11H, m, $\text{Me}_2\text{CHCH}_2\text{CHCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 3.01-3.21 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$); δ_{C} (67.5 MHz, D_2O) 8.19 (MeCH_2), 13.14 (Me_2CH), 21.33 and 21.65 (Me_2CH), 23.75, 30.67, 32.19, 41.21, 46.67 (CH_2), 50.16 ($\text{Me}_2\text{CHCH}_2\text{CH}$); *m/z* (Cl) 161 (M+3-F, 59%), 158 (M-F, 9), 103 (100) and 102 (82); Found 158.1903. $\text{C}_{10}\text{H}_{24}\text{N}$ requires 158.1909.

1-Phenyl-2-amino-3-phenylpropane monohydrofluoride (52). By following method B, the *N*-Dpp compound (**29**) (0.09g, 0.22 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (**52**) (0.046g, 91%) as a clear oil. $[\alpha]_D^{23} 0$ (*c* 0.7 in MeOH); δ_{H} (270 MHz, D_2O) 2.82 (2H, dd, *J* 5.5, 13.0, CH of CH_2Ph), 3.01 (2H, dd, *J* 13.5, 6.0, CH of CH_2Ph), 3.60-3.72 (1H, m, PhCH_2CH), 7.20-7.80 (10H, m, ArH); δ_{C} (67.5 MHz, D_2O) 38.10, 54.19, 127.47, 128.83, 129.37, 135.63; *m/z* (Cl) 212 (M-19, 13%), 120 (100), 91 (36). Found 212.1435. $\text{C}_{15}\text{H}_{18}\text{N}$ requires 212.1439.

(R)-1-Cyclopentyl-2-amino-3-phenylpropane monohydrofluoride (54). By following method B, the *N*-Dpp compound (**31**) (0.07g, 0.17 mmol) was reacted with BF_3OEt_2 (0.2 ml, excess) to yield amine hydrofluoride (**54**) (0.026g, 68%) as a white solid. $[\alpha]_D^{23} 5$ (*c* 0.3 in MeOH); δ_{H} (270 MHz, D_2O) 1.02-2.08 (11H, m,

cyclopentyl and CH₂cyclopentyl), 3.00 (1H, dd, *J* 8.0, 14.2, CH of PhCH₂), 3.19 (1H, dd, *J* 6.2, 14.2, CH of PhCH₂), 3.62-3.72 (1H, m, PhCH₂CH), 7.42-7.57 (5H, m, ArH); δ _C (67.5 MHz, D₂O) 24.41, 31.81, 32.00 (CH₂), 35.49 (CH), 38.22, 38.45 (CH₂), 52.61 (CH), 127.40, 129.02, 129.47, 136.02 (ArC); m/z (Cl) 204 (M-19, 27%), 187 (9), 120 (15) and 112 (100); Found 204.1744. C₁₄H₂₂N requires 204.1752.

(S)-1-Cyclopentyl-2-amino-4-methylpentane monohydrofluoride (55). By following method B, the N-Dpp compound (32) (0.10g, 0.26 mmol) was reacted with BF₃OEt₂ (0.1 ml, excess) to yield amine hydrofluoride (55) (0.042g, 85%) as a white solid. (Found : C, 70.02; H, 12.82; N, 7.15. C₁₁H₂₄NF requires C, 69.84; H, 12.70; N, 7.41%). $[\alpha]_D^{23}$ -5.2 (c 0.5 in MeOH); δ _H (270 MHz, D₂O) 0.85 (6H, 2 x d, *J* 6.5 and 6.5, Me₂CH), 0.89-1.08 and 1.20-1.85 (14H, m, Me₂CHCH₂CHCH₂Cyclopentyl), 3.19-3.27 (1H, m, Me₂CHCH₂CH); δ _C (67.5 MHz, D₂O) 21.24 and 21.72 (Me₂CH), 23.78 (Me₂CH), 24.45, 31.87, 32.13 (CH₂), 35.49 (CH), 38.89, 41.69 (CH₂), 49.72 (Me₂CHCH₂CH); m/z (FAB) 170 (M-F, 100).

(R)-2-Methyl-3-amino-6-methylheptane (56). By following method A the N-Dpp amine (33) (0.80g, 2.3 mmol) was treated with BF₃OEt₂ (7.00 ml, 10 equivalents) to yield amine (56). R_f 0.1 (ethyl acetate); δ _H (400 MHz, CDCl₃) 0.85 (3H, d, *J* 6.8, MeCH), 0.86 (3H, d, *J* 6.8, MeCH), 0.88 (3H, d, *J* 6.8, MeCH), 0.89 (3H, d, *J* 6.8, MeCH), 1.24-1.86 (8H, m, Me₂CHCH₂CH₂ and Me₂CH and NH₂), 3.21-3.29 (1H, m, CH).

(R)-2-Methyl-3-amino-5-methylhexane (57). By following method A the N-Dpp amine (34) (0.37g, 1.0 mmol) was treated with BF₃OEt₂ (1.37 ml, 10 equivalents) to yield amine (57). R_f 0.1 (ethyl acetate); δ _H (400 MHz, CDCl₃) 0.92 (3H, d, *J* 6.8, MeCH), 0.94 (3H, d, *J* 6.8, MeCH), 0.98 (3H, d, *J* 6.8, MeCH), 1.01 (3H, d, *J* 6.8, MeCH), 1.16-1.79 (7H, m, Me₂CHCH₂ and Me₂CH and NH₂), 3.18-3.22 (1H, m, CH).

(R)-2-Methyl-4-amino-7-methyl octane (58). By following method A the N-Dpp amine (35) (0.60g, 1.7 mmol) was treated with BF₃OEt₂ (2.9 ml, 10 equivalents) to yield amine (58). R_f 0.1 (ethyl acetate); δ _H (400 MHz, CDCl₃) 0.88 (6H, d, *J* 6.8, 2MeCH), 0.89 (6H, d, *J* 7.2, 2MeCH), 1.14-1.56 (8H, m, Me₂CHCH₂CH₂ and Me₂CHCH₂), 1.67-1.75 (1H, m, CH), 2.62-2.81 (2H, s, br, NH₂).

*(S)-1-(O-Diphenylphosphinyl)-2-(*p*-toluenesulphonamido)-3-phenylpropane (59).* R_f 0.26 [ethyl acetate-light petroleum (1:1)]; m.p. 140°C; (Found : C, 66.18; H, 5.87; N, 2.68; S, 6.06; P 6.59. C₂₈H₂₈NPO₄S requires C, 66.52; H, 5.58; N, 2.77; S, 6.34; P, 6.13%). $[\alpha]_D^{23}$ 5.3 (c 9 in CH₂Cl₂); ν max (CCl₄) / cm⁻¹ 3100 (NH), 2880 (CH), 1610, 1480, 1360, 1220, 1170, 1030 (S=O and P=O), 960, 620; δ _H (270 MHz, CDCl₃) 2.32 (3H, s, CCH₃), 2.87 (1H, dd, *J* 8.5, 13.5, CH of PhCH₂), 2.95 (1H, dd, *J* 6.0, 13.5 Hz, CH of CH₂Ph), 3.59-3.60 (1H, m, CH), 3.81-3.93 (2H, m, CH₂OPOPh₂), 6.22 (1H, d, *J* 6.0, NH), 7.19-7.83 (19H, m, ArH); δ _C (67.5 MHz, CDCl₃) 21.43 (CCH₃), 38.40 (PhCH₂), 55.05 (d, *J* 4.3, CH), 66.01 (d, *J* 6.5, CH₂OPOPh₂), 126.69, 127.00, 128.61, 128.75, 128.81, 129.27, 129.46, 131.46, 131.62, 131.65, 131.81, 132.51, 136.81, 137.61, 142.88 (ArC); δ P (161.7 MHz, CDCl₃) 34.51; m/z (EI) 414 (M-91, 42%), 196 (71), 132 (48), 105 (28) and 91 (100).

*(S)-1-(O-Diphenylphosphinyl)-2-(*p*-toluenesulphonamido)-4-methylpentane (60).* R_f 0.33 [ethyl acetate-light petroleum (1:1)]; m.p. 164-165°C; (Found : C, 63.50; H, 6.43; N, 2.93; S, 6.71; P, 6.51. C₂₅H₃₀NPSO₄

requires C, 63.68; H, 6.41; N, 2.97; S, 6.80; P, 6.57%). $[\alpha]_D^{23}$ 8 (c 20 in CH_2Cl_2); ν_{max} (CCl_4) / cm^{-1} 3080 (NH), 2980 (CH), 1450, 1220, 1140 (S=O and P=O); δ_{H} (270 MHz, CDCl_3) 0.74 and 0.80 (6H, 2 \times d, J 6.5, Me_2CH), 1.24-1.65 (3H, m, Me_2CHCH_2), 2.33 (3H, s, CCH_3), 3.43-3.52 (1H, m, $\text{Me}_2\text{CHCH}_2\text{CH}$), 3.83 (1H, dd, J 4.0, 10.5, CH of CH_2ODpp), 3.91 (1H, dd, J 10.5, 4.0, CH of CH_2ODpp), 6.21 (1H, d, J 5.0, NH), 7.10 (2H, d, J 8.0, 2 Tosyl ArH), 7.38-7.97 (12H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 21.32, 21.92, 22.55 (Me), 24.08 (CH), 41.14 (CH₂), 51.75 (d, J 5.4, CH), 67.08 (d, J 6.5, CH₂), 126.86, 128.38, 128.59, 129.34, 131.33, 131.50, 131.54, 131.65, 131.69, 132.24, 138.15, 142.77 (ArC); δ_{P} (161.7 MHz, CDCl_3) 33.54; m / z (EI) 471 (M⁺, 10%), 414 (M-57, 5), 231 (100), 219 (79), 201 (47), 91 (65), 77 (19) and 42 (20); Found 471.1633. $\text{C}_{25}\text{H}_{30}\text{NO}_4\text{PS}$ requires 471.1626.

'One pot' Synthesis of aziridines

To a solution of the respective β -aminoalcohol (typically 1.5 mmol) in THF, under N_2 , at 0°C, was added DppCl (2 equivalents) and Et_3N (3 equivalents). A white precipitate of triethylamine hydrochloride was immediately formed. The suspension was stirred at 0°C to room temperature for 20 hours, after which time it was recooled to 0°C and NaH (10 equivalents) added. The suspension was stirred at 0°C to room temperature for a further 20 hours and then H_2O (one equivalent based on NaH) was added. The solution was then filtered through anhydrous magnesium sulfate and the resulting filter cake washed with ether (100 ml). The solvent was then removed *in vacuo* to leave a gum which was purified by column chromatography on silica gel with ethyl acetate as eluent.

(S)-*N*-Diphenylphosphinyl-2-benzyl aziridine (**5**). By following the general procedure described above (2S)-(-)-2-amino-3-phenylpropanol (0.2 g, 1.3 mmol), DppCl (0.51 ml, 2.6 mmol), Et_3N (0.55 ml, 4.0 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield aziridine (**5**) (0.38 g, 86%) as a white solid. The data obtained for this solid was exactly analogous to that reported previously.

(S)-*N*-Diphenylphosphinyl-2-(2-methylpropyl) aziridine (**6**). By following the general procedure described above (2S)-leucinol (0.2 g, 1.7 mmol), DppCl (0.65 ml, 3.4 mmol), Et_3N (0.71 ml, 5.1 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield aziridine (**6**) (0.40 g, 78%) as a white solid. The data obtained for this solid was exactly analogous to that reported previously.

(S)-*N*-Diphenylphosphinyl-2-(2-methyl)ethyl aziridine (**6I**). By following the general procedure described above (2S)-(+)-amino-3-methylbutanol (0.2 g, 1.9 mmol), DppCl (0.75 ml, 3.8 mmol), Et_3N (0.81 ml, 5.8 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield aziridine (**6I**) (0.37 g, 67%) as a clear oil. R_f 0.25 (ethyl acetate); $[\alpha]_D^{20}$ -14.9 (c 1 in CH_2Cl_2); (Found : C, 71.1; H, 7.2; N, 5.2. $\text{C}_{17}\text{H}_{20}\text{NOP}$ requires C, 71.5; H, 7.1; N, 4.9%). ν_{max} (neat liquid) / cm^{-1} 3060, 2920 (CH), 1440, 1200, 1189, 1129 (P=O), 740 (aromatic); δ_{H} (400 MHz, CDCl_3) 0.70 and 0.88 (6H, 2 \times d, J 6.5, Me_2CH), 1.40-1.52 (1H, m, Me_2CH), 1.92 (1H, ddd, J 1.0, 3.5, 12.5, CH of CH_2NH), 2.41 (1H, ddd, J 1.0, 6.0, 17.5, CH of CH_2NH), 2.44-2.61 (1H, m, Me_2CHCH), 7.41-7.47 and 7.90-7.96 (10H, m, ArH); δ_{C} (100 MHz, CDCl_3) 19.10, 19.74 (both Me_2CH), 28.20 (d, J 7.5, Me_2C), 30.76 (d, J 4.0, CH), 41.60 (d, J 6.0, CH₂), 128.16, 128.28, 128.38, 128.50, 130.34, 131.58, 131.67, 131.74, 131.78, 131.87, 132.36 (ArC); m / z (Cl) 286 (M+1, 100%), 208 (28) and 79 (36); Found 286.1336. $\text{C}_{17}\text{H}_{21}\text{NOP}$ requires 286.1361.

(S)-N-Diphenylphosphinyl-2-phenyl aziridine (62). By following the general procedure described above (2S)-(+)-2-amino-2-phenylethanol (0.2 g, 1.5 mmol), DppCl (0.56 ml, 2.9 mmol), Et₃N (0.61 ml, 4.4 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield a yellow oil. Crystallisation from chloroform / hexane afforded aziridine (62) (0.24 g, 52%) as a colourless solid. R_f 0.3 (ethyl acetate); m.p. 91 °C; [α]_D²³ -4.6 (c 5 in CH₂Cl₂); (Found : C, 75.00; H, 5.85; N, 4.35. C₂₀H₁₈NOP requires C, 75.2; H, 5.7; N, 4.4%); ν_{max} (CHCl₃) / cm⁻¹ 3061 (CH), 1591, 1581, 1258, 1125 (P=O), 1011, 842, 728 (aromatic); δ_H (270 MHz, CDCl₃) 2.19 (1H, ddd, J 1.5, 3.0, 13.0, CH of CH₂N), 2.86 (1H, ddd, J 1.5, 6.0, 18.0, CH of CH₂N), 3.74 (1H, ddd, J 3.0, 6.0, 15.5, CHN), 7.25-7.50 and 7.83-8.01 (15H, m, ArH); δ_C (67.5 MHz, CDCl₃) 32.97 (d, J 7.0, CH₂), 36.81 (d, J 7.0, CH), 126.2-137.6 (ArC); δ_P (121.4 MHz, CDCl₃) 32.67; m / z (Cl) 320 (MH⁺, 100%), 242 (27), 201 (Ph₂PO, 36), 118 (60); Found 320.1194. C₂₁H₁₈NOP requires 320.1204.

(S)-N-Diphenylphosphinyl-2-methyl aziridine (63). By following the general procedure described above (2S)-(+)-2-aminopropanol (0.2 g, 2.7 mmol), DppCl (1.0 ml, 5.3 mmol), Et₃N (1.12 ml, 8.0 mmol) and NaH (0.5 g, 20.8 mmol) in THF (20 ml) were reacted to yield a colourless oil. Crystallisation from ethyl acetate / hexane afforded aziridine (63) (0.38 g, 56%) as a colourless solid. R_f 0.25 (ethyl acetate); m.p. 119.5-120.5 °C; [α]_D²³ -3.7 (c 1 in CH₂Cl₂); (Found : C, 70.15; H, 6.40; N, 5.35. C₁₅H₁₆NOP requires C, 70.0; H, 6.3; N, 5.45%). ν_{max} (CCl₄) / cm⁻¹ 3060, 2928 (CH), 1438, 1399, 1249, 1203, 1126 (P=O), 1111, 996, 695 (aromatic); δ_H (270 MHz, CDCl₃) 1.27 (3H, d, J 5.5, CH₃), 1.88 (1H, ddd, J 1.0, 3.5, 12.5, CH of CH₂N), 2.47 (1H, ddd, J 1.0, 6.0, 17.5, CH of CH₂N), 2.52-2.59 (1H, m, CH₃CHN), 7.41-7.52 (6H, m, ArH), 7.90-7.98 (4H, m, ArH); δ_C (67.5 MHz, CDCl₃) 17.38 (d, J 4.5, CH₃), 29.69 (d, J 6.0, CH₂), 30.58 (d, J 6.0, CH), 127.84-132.84 (ArC); δ_P (121.4 MHz, CDCl₃) 32.02; m / z (Cl) 258 (MH⁺, 100%), 215 (24), 201 (Ph₂PO, 60), 180 (35), 56 (47). Found 258.1048. C₁₆H₁₆NOP requires 258.1048.

(S)-N-Diphenylphosphinyl-2-(2-methylthioethyl) aziridine (64). By following the general procedure described above (2S)-(-)-2-amino-4-methylthiobutanol (0.1 ml, 1.1 mmol), DppCl (0.43 ml, 2.2 mmol), Et₃N (0.47 ml, 3.4 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield aziridine (64) (0.28 g, 79%) as a clear oil. R_f 0.2 (ethyl acetate); [α]_D²³ -10.3 (c 5 in CH₂Cl₂); (Found : C, 64.4; H, 6.60; N, 4.35. C₁₇H₂₀NOPS requires C, 64.3; H, 6.35; N, 4.4%); ν_{max} (CCl₄) / cm⁻¹ 2913 (CH), 1742, 1480, 1127 (P=O), 960, 729, 696 (aromatic); δ_H (400 MHz, CDCl₃) 1.66-1.74 and 1.82-1.91 (2H, 2 x m, CH₂CH₂CH), 1.98 (3H, s, MeS), 2.01 (1H, dd, J 3.0, 12.5, CH of CH₂N), 2.22-2.35 (2H, m, CH₃SCH₂), 2.57 (1H, dd, J 3.0, 12.5, CH of CH₂N), 2.76-2.81 (1H, m, CHN), 7.28-7.53 (6H, m, ArH), 7.78-7.95 (4H, m, ArH); δ_C (67.5 MHz, CDCl₃) 15.46 (SCH₃), 29.48 (d, J 7.0, CH₂CHN), 31.37 (CH₃SCH₂), 32.32 (d, J 4.0, CHCH₂N), 34.47 (d, J 6.0, CHN), 128.39-132.7 (ArC); δ_P (161.9 MHz, CDCl₃) 31.78; m / z (Cl) 318 (MH⁺, 97%), 304 (M-Me, 21), 270 (M-MeS, 59), 218 (60), 210 (Ph₂PO, 100), 61 (88). Found 318.1080. C₁₈H₂₀NOPS requires 318.1082.

(S)-N-Diphenylphosphinyl-2-(1-methylpropyl) aziridine (65). By following the general procedure described above (S)-(+)-isoleucinol (0.2 g, 1.7 mmol), DppCl (0.65 ml, 3.4 mmol), Et₃N (0.71 ml, 5.1 mmol) and NaH (0.4 g, 16.6 mmol) in THF (20 ml) were reacted to yield aziridine (65) (0.45 g, 87%) as a pale yellow oil. R_f 0.25 (ethyl acetate); [α]_D²³ -15.0 (c 5 in CH₂Cl₂); (Found : C, 72.1; H, 7.5; N, 4.7. C₁₈H₂₂NOP requires C, 72.2; H, 7.4; N, 4.7%); ν_{max} (CCl₄) / cm⁻¹ 2928 (CH), 1572, 1126 (P=O), 944, 692 (aromatic); δ_H (400 MHz, CDCl₃) 0.67 (3H, t, J 7.5, CH₂CH₃), 0.86 (3H, d, J 7.0, CHCH₃), 0.95 (1H, m,

$\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)$, 1.18-1.32 (2H, m, $\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)$), 1.93 (1H, ddd, J 1.0, 3.5, 12.5, CH of CH_2N), 2.46 (1H, ddd, J 1.0, 6.0, 18.0, CH of CH_2N), 2.55-2.63 (1H, m, CHN), 7.39-7.51 (6H, m, ArH), 7.87-7.95 (4H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 10.44 (CH_2CH_3), 15.05 ($\text{CH}(\text{CH}_3)\text{CH}$), 26.80 (CH_3CH_2), 27.33 (d, J 13.0, CHCH_2N), 36.49 ($\text{CH}(\text{CH}_3)$), 40.16 (d, J 4.0, CHN), 128.29-132.79 (ArC); δ_{P} (161.9 MHz, CDCl_3) 31.83; m / z (Cl) 300 (MH^+ , 100%), 222 (41), 201 (Ph_2PO , 55), 98 (65). Found 300.1520. $\text{C}_{18}\text{H}_{23}\text{N}$ requires 300.1517.

N,O-bis-(Diphenylphosphinyl)-2-(hydroxymethyl) aziridine (66). By following the general procedure described above 2-amino-1,3-propanediol (0.5 g, 5.5 mmol), DppCl (3.2 ml, 16.5 mmol), Et_3N (3.1 ml, 22.0 mmol) and NaH (1.0 g, 41.7 mmol) in THF (100 ml) were reacted to yield a colourless oil. Crystallisation from EtOAc / hexane gave aziridine (66) (1.56 g, 60%) as a white solid. R_f 0.4 (10% methanol, ethyl acetate); m.p. 138-139°C; (Found : C, 68.3; H, 5.4; N, 2.8. $\text{C}_{27}\text{H}_{25}\text{NO}_3\text{P}_2$ requires C, 68.5; H, 5.3; N, 3.0%); ν_{max} (CHCl_3) / cm^{-1} 2982 (CH), 1438, 1132 (P=O), 1022, 834 (aromatic); δ_{H} (300 MHz, CDCl_3) 2.03 (1H, dd, J 3.0, 12.5, CH of CH_2N), 2.58 (1H, dd, J 6.0, 16.0, CH of CH_2N), 3.04-3.19 (1H, m, CHN), 3.89-3.97 and 4.19-4.23 (2H, 2 x m, CH_2ODpp), 7.27-7.95 (20H, m, ArH); δ_{C} (67.5 MHz, CDCl_3) 26.85 (CH_2N), 34.13 (CHN), 65.69 (CH_2ODpp), 128.8-131.5 (ArC); δ_{P} (161.9 MHz, CDCl_3) 31.91 and 32.68; m / z (Cl) 474 (MH^+ , 95%), 419 (9), 274 (M- Ph_2PO , 9), 219 (100), 201 (Ph_2PO , 41). Found 474.1376. $\text{C}_{27}\text{H}_{26}\text{NO}_3\text{P}_2$ requires 474.1387.

REFERENCES

1. Present address: Department of Chemistry, University of Reading, Reading, RG6 6AD, UK.
2. For pertinent reviews, see Osborn, H.M.I.; Sweeney, J. *Tetrahedron: Asymmetry*, 1997, **8**, 1693; Tanner, D. *Ang. Chem., Int. Edn. Engl.*, 1994, **33**, 599.
3. For recent developments in cleavage of sulfonamide bonds, see: Nyasse, B.; Grehn, L.; Ragnarsson, U. *Chem. Comm.*, 1997, 1017; Fukuyama, T.; Jow, C.K.; Cheung, M. *Tetrahedron Lett.*, 1995, **36**, 6373; Vedejs, E.; Lin, S.Z. *J. Org. Chem.*, 1994, **59**, 1602, and references therein.
4. Osborn, H.M.I.; Sweeney, J.B.; Howson, W. *J. Chem. Soc., Perkin Trans. I*, 1995, 2439.
5. Hague, M.; Caughlan, C. *N. Chem. Comm.*, 1966, 921.
6. Ueki, M.; Ikeda, S.; *Chem. Lett.*, 1976, 827.
7. Ramage, R.; Hopton, D.; Parrott, M. J.; Kenner, G. W.; Moore, G. A. *J. Chem. Soc., Perkin Trans. I*, 1984, 1357; Kenner, G. W.; Moore, G. A.; Ramage, R. *Tetrahedron Lett.*, 1976, 3623.
8. Anet, F. A. L.; Trepka, R. D.; Cram, D. J. *J. Am. Chem. Soc.*, 1967, **89**, 357.
9. Berry, M. B.; Craig, D. *SYNLETT*, 1992, 41.
10. Lygo, B. *Tetrahedron*, 1995, **51**, 12859.